Выбрать главу

Гибкость молекул

Длинную молекулу можно сравнить с рельсом. На длине 0,1 мм уместится 106 атомов. Поперечные размеры молекулы полиэтилена - что-нибудь около 3-4 Å. Так что длина молекулы больше ее поперечного сечения в сотни тысяч раз. Так как рельс имеет толщину около 10 см, то зрительным образом длинной молекулы будет рельс длиной 10 км.

Это не значит, конечно, что не приходиться иметь дело с.короткими молекулами. Вообще, если не принять специальных мер, то в полимерном веществе мы найдем молекулы разной длины - от таких, которые состоят из нескольких звеньев, до таких, которые построены из тысяч звеньев.

Итак, длинная молекула похожа на рельс. Похожа, но не совсем. Рельс согнуть трудно, а длинная молекула гнется легко. Гибкость макромолекулы не похожа на гибкость ивового прута. Она возникает из-за особой способности всех молекул: одна часть молекулы может вращаться около другой части, если они соединены связями, которые химики называют одинарными (одновалентными). Нетрудно сообразить, что благодаря этому свойству полимерные молекулы могут принять самые причудливые формы. На рис. 9.2 показана модель гибкой молекулы в трех положениях. Если молекула плавает в растворе, то она большей частью сворачивается в клубок.

Рис. 9.2

Растяжение резинового шнура происходит благодаря разворотам, молекул. Так что упругость полимеров имеет совсем другую природу, чем упругость металлов. Если растянутый шнур отпустить, то он сократится. Значит, молекула стремится из линейной формы перейти в клубкообразную. В чем причина? Их могут быть две. Во-первых, можно допустить, что состояние клубка энергетически более выгодно; во-вторых, можно предположить, что сворачивание содействует возрастанию энтропии. Итак, какой закон термодинамики командует этим поведением: первый или второй? Надо думать, что оба. Но без сомнения состояние клубка выгодно и с точки зрения энтропии. Ведь чередование атомов молекулы, свернутой в клубок, более беспорядочно, чем в вытянутой молекуле. А мы знаем, что беспорядок и энтропия находятся в близком родстве.

Что же касается выигрыша в энергии, то он происходит за счет плотной упаковки атомов, составляющих полимерную молекулу. Сворачивание молекулы в спираль или клубок происходит таким образом, чтобы было обеспечено максимальное число контактов между валентно не связанными атомами.

Директор-распорядитель клетки

Все живое состоит из клеток. Все клетки имеют ядра. Во всех ядрах имеются особые полимерные молекулы, которые можно было бы назвать "ядерными". Но русское прилагательное не в ходу. Эти молекулы носят название нуклеиновых кислот. Среди них есть знаменитости. Знаменитые нуклеиновые кислоты настолько хорошо известны, что их сокращенные трехбуквенные символы РНК (рибонуклеиновая кислота) ДНК (дезоксирибонуклеиновая кислота) можно встретить на страницах романов и повестей.

Суперзвездой среди макромолекул является молекула ДНК. Причина тому следующая: эта полимерная молекула отвечает за рост организма, ибо - правда с помощью молекул РНК - фабрикует белки; молекула ДНК несет в себе кодовую запись признаков, однозначно характеризующих организм. Иными словами, ДНК ответственна за передачу наследственности от родителей к потомкам.

Что же собой представляют молекулы этих полимеров? Упорядочены ли звенья, составляющие молекулу, или расположены в беспорядке? Дело обстоит следующим образом. Одиночная молекула ДНК представляет собой цепь, хребет которой имеет одну и ту же структуру для молекул ДНК разных организмов. К хребту цепи присоединены четыре разных молекулы. Две из них побольше размером, две другие в два раза меньше. Атомы, составляющие основную цепь молекулы, расположены упорядочено, а вот "листочки", присоединенные к ветке, следуют друг за другом без всякого порядка. Однако замечательным и важнейшим обстоятельством является то, что все молекулы ДНК одного индивидуума тождественны и непохожи (в отношении следования "листочков") на молекулы другой особи даже того же вида.

Именно из-за различия в молекулах ДНК отличаются друг от друга все люди, все львы, все березы. Отличаются не только по этой причине, но главным образом именно из-за того, что "листочки" следуют друг за другом в разном порядке.

Одиночная молекула ДНК представляет собой спираль. Но в ядрах клетки эти молекулы сплетаются попарно в двойную спираль. Атомы двойной спирали плотно упакованы и образуют очень длинную жесткую молекулу, которая пересекает все поле зрения электронного микроскопа.

Определение структуры молекулы ДНК было произведено на основании химических сведений о нуклеиновых кислотах, знания правил сворачивания и упаковки молекул, которые требуют создания как можно более плотной упаковки атомов, а также результатов рентгеноструктурного анализа.