Выбрать главу

Мы располагаем бесчисленными данными наблюдений, подтверждающими выполнение законов сохранения

Анализ экспериментов по проверке законов сохранения и обсуждение нашего опыта в их истолковании см. в упражнениях 90—100.

Энергия, высвобождающаяся при сгорании угля или газа, при взрыве динамита, представляется нам в масштабах повседневного опыта громадной. Однако, если перевести её величину на язык эквивалентной массы, мы обнаруживаем, что перешедшая в энергию часть массы не составляет и 10⁻⁹ от полной величины массы покоя (см., например, упражнение 63), а такое изменение массы слишком мало для того, чтобы его можно было обнаружить с помощью приборов, которыми мы сейчас располагаем. Поэтому в поисках той области, где было бы возможно досконально проверить законы сохранения, мы вынуждены обращаться к миру физики элементарных частиц и к миру ядерной физики.

Таблица 11.

Сколько проверок геометрии Эвклида и геометрии Лоренца производится каждый год?

Проверки эвклидовой геометрии

Проверки лоренцевой геометрии

42 000

геодезистов (согласно статистическим данным США за 1963 г.), каждый из которых производит по 20 съёмок в год, определяя при каждой по

𝑛

вершин ограничивающего многоугольника, измеряя внутренний угол при каждой вершине, складывая углы и сравнивая полученную сумму с величиной (

𝑛-2

)

⋅180°

, предсказываемой эвклидовой геометрией

50 ускорителей элементарных частиц (ориентировочно), дающих частицы с энергией выше 100

Мэв

, каждый из которых работает по 100 дней в году и каждый регистрирует по 200 столкновений в день, в которых должны были бы чувствоваться отклонения от релятивистских законов сохранения

Результат

:

800 000

проверок в год, каждая с относительной точностью

1⋅10⁻⁴

или выше

Результат

:

1 000 000

проверок в год, каждая с относительной точностью

1⋅10⁻⁴

или выше

В ядерной физике многие объекты исследования живут лишь очень короткое время. Нелегко точно определить значения масс таких короткоживущих частиц с помощью обычных масс-спектрометров. Вместо этого их массы определяются с помощью законов сохранения импульса и энергии, применяемых к процессам столкновений или превращений частиц, массы одной или более из которых нам уже известны. Уже при таких расчётах можно проверять законы сохранения, так как интересующая нас частица часто образуется в ходе нескольких различных реакций. Однако для того, чтобы непосредственно проверить равенство энергии, выделяющейся при превращениях, и энергии, вычисляемой по изменению величины массы покоя, лучше обратиться к миру ядерной физики. Там величина массы определяется непосредственно и с высокой степенью точности как для стабильных ядер, так и для некоторых нестабильных.

Ядерная физика предоставляет особенно благоприятные возможности для точной проверки законов сохранения

Возможности точного сравнения величины выделяющейся энергии и изменения массы наиболее благоприятны в случае лёгких ядер, так как при этом изменение массы в ходе рядовой ядерной реакции составляет более значительную часть полной массы и, следовательно, может быть более точно определено, чем в случае тяжёлых ядер. Мы рассмотрим поэтому реакцию между двумя самыми лёгкими атомными ядрами,— ту реакцию, которая к тому же имеет громадное значение в наш ядерный век:

Быстрый

дейтрон

+

Покоящийся

дейтрон

Протон

с очень

высокой

энергией

+

Ядро

трития с

высокой

энергией

Нейтрон

с очень

высокой

энергией

+

Ядро

гелия-3 с

высокой

энергией

или

𝙷²

(быстрый)

+

𝙷²

𝙷¹

+

𝙷³

𝑛

+

𝙷𝚎³

(93)

Обе альтернативные реакции, описываемые схемой (93), происходят со сравнимыми частотами при взрыве водородной бомбы (или «термоядерного оружия»). Они приводят к высвобождению значительной энергии, что характерно для устройств, использующих дейтерий («тяжёлый водород» 𝙷²). Кинетическая энергия продуктов такой термоядерной реакции в сотни раз превышает кинетическую энергию первоначальных дейтронов.

Масса ядра трития, определённая из законов сохранения, согласуется с его массой, измеренной с помощью спектрометра

Реакция, приводящая к возникновению ядра трития [первая из двух альтернативных реакций (93)], служит наиболее точным самостоятельным методом проверки законов сохранения, какой только возможно найти в физике вообще. Реализация этого метода возможна потому, что с помощью масс-спектрометра удаётся независимым образом точно определять массы покоя всех частиц, принимающих участие в этой реакции (дейтрона, протона и ядра трития).

Но массу покоя нейтрона невозможно определить независимым образом столь же точно. Поэтому мы не концентрируем внимания на второй реакции (93), приводящей к образованию нейтрона. Она непригодна для проведения наиболее точных проверок эквивалентности массы и энергии. Нейтрон — нестабильная частица (со средним временем жизни около 17 мин), а что важнее всего, он безразличен к воздействию электрического и магнитного полей в масс-спектрометре (электрически нейтрален!). Такая безразличность является препятствием для прецизионного независимого определения массы нейтрона.

Допустим, что мы сосредоточили бы здесь своё внимание не на ядре трития, а на нейтроне. На что могли бы мы надеяться, не располагая независимо определённым точным значением массы нейтрона? Нам пришлось бы отказаться от попыток проверки законов сохранения, и вместо этого мы могли бы использовать законы сохранения для определения массы нейтрона с относительной точностью около 10⁻⁵. Что же может гарантировать нам, что законы сохранения дают в применении ко второй реакции средство для надёжного определения массы нейтрона? Дело в том, что законы сохранения, если применить их к первой реакции, дают такое значение массы ядра трития, что оно согласуется с данными масс-спектрометрии даже лучше, чем до 10⁻⁵ своей величины. (См. на стр. 166—167 «Анализ реакции 𝙷²+𝙷²→𝙷¹+𝙷³»). Как эта последняя проверка законов сохранения, обладающая наивысшей точностью, так и множество других экспериментов в прочих областях физики, проводимых с несколько меньшей прецизионностью, убедительно говорят о полноценности принципа сохранения.

Необходимо сделать оговорку о тех единицах, в которых проведены расчёты на стр. 166—167. В принципе было бы естественно выразить все значения энергии и импульса в килограммах по аналогии с предыдущими расчётами в этой главе. Однако для этого пришлось бы перевести все величины, измеренные с помощью масс-спектрометра, из «атомных единиц массы» (АЕМ — новая шкала, выбранная в 1961 г., когда перешли от 𝙾¹⁶=16,000 к 𝙲¹²=12,000) в килограммы, одновременно переведя значения кинетической энергии, измеряемые физиками-ядерщиками в электронвольтах, в килограммы. Удобнее выражать энергию в единицах АЕМ, избегая расчётов, в ходе которых АЕМ переводятся в килограммы. К тому же все используемые нами формулы справедливы при любом выборе единиц для массы-энергии, лишь бы только эти единицы последовательно использовались от начала и до конца. Но тогда будет нужно перейти от электронвольт к АЕМ. Как это сделать? К счастью, для этого нет необходимости знать число килограммов, содержащихся в 1 АЕМ, или, что то же, не надо знать, сколько атомов содержится в одном грамм-атоме (число Авогадро 𝑁=(6,02252±0,00028)⋅10²³). Та неопределённость, с которой в настоящее время известна эта величина (10⁻⁵), повлияла бы на все наши выводы, если бы мы захотели совершить переход к килограммам. Множитель перехода от электронвольт к АЕМ вычислен на стр. 168.