Выбрать главу

Номера в скобках, стоящие после названия упражнений, указывают, какие упражнения необходимо решить, прежде чем приступать к данному

A. Общие задачи

55.

Быстрые электроны

56*.

Космические лучи

57.

Границы ньютоновской механики

58*.

Релятивистская ракета

59*.

Парадокс центра масс

60*.

Второй вывод релятивистского выражения для импульса

61*.

Второй вывод релятивистского выражения для энергии

Б. Эквивалентность энергии и массы покоя

62.

Задачи на пересчёт

63.

Релятивистская химия

64**.

Релятивистский осциллятор

65**.

Импульс без массы?

B. Фотоны

66.

Частицы нулевой массы покоя

67.

Эйнштейновский вывод принципа эквивалентности энергии и массы покоя — подробный пример

68*.

Устойчивость фотона (66)

69*.

Давление света (66)

70*.

Эффект Комптона (66)

71**.

Измерение энергии фотона

72**.

Энергия и частота фотона (66)

73*.

Гравитационное красное смещение (66)

74*.

Плотность спутника Сириуса (73)

Г. Допплеровское смещение

75.

Формулы Допплера (66, 22)

76.

Распад π⁰-мезона; подробный пример

77.

Полёт неоновой лампочки (75)

78.

Физик и светофор (75)

79.

Допплеровское смещение на краю диска Солнца (73, 75)

80.

Расширяющаяся Вселенная (75)

81*.

Анализ парадокса часов с помощью эффекта Допплера (75)

82*.

«Не превышайте скорости» (75)

83*.

Допплеровское уширение спектральных линий (75)

84*.

Изменение энергии фотона вследствие отдачи излучателя (83)

85*.

Эффект Мёссбауэра (84)

86**.

Резонансное рассеяние (85)

87**.

Измерение допплеровского смещения по резонансному рассеянию (86)

88**.

Проверка эффекта гравитационного красного смещения с помощью эффекта Мёссбауэра (73, 87)

89**.

Проверка парадокса часов с помощью эффекта Мёссбауэра (87)

Д. Столкновения

90.

Симметричное упругое столкновение

91.

Давид и Голиаф — подробный пример

92.

Абсолютно неупругое столкновение

93*.

Порождение частиц протонами

94*.

Порождение частиц электронами

95*.

Фоторождение пары одиночным фотоном (66, 93)

96**.

Фоторождение пары двумя фотонами (95)

97**.

Аннигиляция электрон-позитронной пары

98*.

Проверка принципа относительности (97)

99*.

Отождествление частиц по трекам в пузырьковой камере

100*.

Накопительные кольца и встречные пучки (93)

Е. Атомная физика

101*.

Де Бройль и Бор (72)

102*.

Ви'дение посредством электронов (101)

103**.

Прецессия Томаса (52, 101)

Ж. Межзвёздные полёты

104*.

Трудности межзвёздных полётов (58)

А. ОБЩИЕ ЗАДАЧИ

55. Быстрые электроны

Станфордский линейный ускоритель сконструирован для ускорения электронов вплоть до кинетической энергии 40 Бэв (40 миллиардов электронвольт; 1 эв = 1,6⋅10⁻¹⁹ дж) для экспериментов с элементарными частицами. Ускоритель имеет в длину 10 000 фут (приблизительно 3000 м) и напоминает по виду трубу; электроны ускоряются в нем электромагнитными волнами, генерирующимися в огромных «радиолампах»— клистронах.

а) С точки зрения лабораторной системы отсчёта возрастание энергии электрона на каждом метре пути, пройденного в трубе ускорителя, приблизительно одинаково. Чему равна энергия, которую каждый электрон приобретает на 1 м пути (в Мэв); Допустим, что справедливо ньютоновское выражение для кинетической энергии. Какой путь должен был бы проделать электрон в трубе ускорителя, чтобы его скорость сравнялась со скоростью света? (Ответ на этот вопрос был предвосхищен в тексте, см. стр. 27).

б) На самом же деле, конечно, даже электроны с энергией 40 Бэв, выходящие из ускорителя, обладают скоростью β, меньшей, чем скорость света. Чему равна разность 1-β между скоростью света и скоростью этих электронов? Устроим состязания на скорость полёта между электронами с энергией 40 Бэв и световой вспышкой в эвакуированной трубе длиной 1000 км. Насколько свет опередит электроны в конце дистанции? Выразите ответ в миллиметрах.

в) Чему равна длина трубы «3 000 м» (длина ускорителя), если её измерять в системе отсчёта ракеты, движущейся вместе с электронами энергии 40 Бэв, которые даёт ускоритель? ▼

56*. Космические лучи

а) В космических лучах наблюдалась (косвенными методами) по меньшей мере одна частица, энергия которой была оценена в 16 дж (1,0⋅10²⁰ эв) 1). Если носителем этой энергии был протон (𝑚𝑐²≈1 Бэв), то сколько времени потребовалось бы ему, чтобы пересечь нашу Галактику (диаметром 10⁵ световых лет), если измерять время по часам, летящим вместе с этим протоном? Ответ выразите в секундах (1 год ≈ 32⋅10⁶ сек). (В системе отсчёта Земли такой протон, движущийся почти со скоростью света, совершит этот перелёт немногим более чем за 10⁵ лет!)

1) Jonh Linsley, Physical Review Letters, 10, 146 (1963).

б) Во сколько раз энергия частицы должна превышать её энергию покоя, чтобы диаметр нашей Галактики в результате лоренцева сокращения оказался равным диаметру этой частицы (около 1 ферми, что равно 10⁻¹⁵ м)? Какое количество массы потребовалось бы превратить в энергию, чтобы придать требуемую скорость протону? ▼

57. Границы ньютоновской механики

а) Один электронвольт (1 эв) равен тому изменению, которое претерпевает кинетическая энергия частицы, несущей единичный элементарный заряд, когда она проходит через разность потенциалов 1 в. 1 эв =1,60⋅10⁻¹⁹ дж. Чему равны энергии покоя электрона и протона (их массы указаны в конце книги), выраженные в миллионах электронвольт (Мэв)?

б) Кинетическая энергия частицы, движущейся с данной скоростью β, даётся выражением ½ 𝑚β² неточно. Относительная ошибка,

Релятивистское

выражение для

кинетической

энергии

-

Ньютоновское

выражение для

кинетической

энергии

,

Ньютоновское выражение

для кинетической энергии

равна 1 % при достижении ньютоновской кинетической энергией величины, составляющей определённую часть энергии покоя. Чему равна эта часть? [Можно ограничиться приблизительным ответом, полученным из анализа следующего члена разложения по формуле бинома (или в степенной ряд) точной формулы для энергии как функции скорости β, либо из других чётко сформулированных рассуждений.] Назовём этот случай (когда ошибка составляет 1 %) совершенно произвольно «границей ньютоновской механики». При какой кинетической энергии достигает этой границы протон (выразите энергию в Мэв)? При какой — электрон? ▼