Выбрать главу

б) В 1958 г. 29-летний P. Л. Мёссбауэр сделал важное открытие, что не все излучаемые гамма-кванты испытывают такой сдвиг частоты 1). Исходя из квантовой механики, он доказал теоретически, подтвердив свой вывод экспериментальной проверкой, что когда атомы железа включены в твёрдое тело (поскольку атомы железа образовались при радиоактивном распаде атомов кобальта, первоначально включённых в это твёрдое тело), значительная часть этих атомов железа не испытывает отдачи, свойственной свободным атомам в момент излучения. Напротив, они ведут себя так, как если бы их жёстко связали с покоящимся твёрдым телом. Импульс отдачи передаётся при этом всему телу как целому. Но масса тела превышает массу отдельного атома на много порядков (степеней 10), и в этом случае мы имеем явление, названное процессом без отдачи. (Излучение фотонов ядрами атомов, связанных в твёрдом теле, не сопровождающееся эффектом отдачи, напоминает один из фактов, обнаруженных Комптоном, а именно что некоторые из фотонов, рассеянных крепко связанными в атоме электронами, приобретают очень малое изменение энергии, так как атом испытывает отдачу как единое целое; см. упражнение 70). Для гамма-лучей, испускаемых в процессах без отдачи, в упражнении 84 в качестве 𝑚 следует взять массу всего куска металла, в которой заключены атомы железа. Если эту массу принять равной 1 г, чему будет равен относительный сдвиг частоты гамма-кванта в процессе «без отдачи»?

1) За это открытие немецкий учёный был удостоен Нобелевской премии 1961 г.; подробности см. в статье S. DeBenedetti, The Mössbauer Effect, Scientific American, 202, 72 (April, 1960).

Рис. 114. Естественная ширина линии для фотона, испущенного ядром 𝙵𝚎⁵⁷.

в) Испущенные возбуждёнными ядрами 𝙵𝚎⁵⁷ гамма-лучи не состоят из квантов, несущих в точности одну и ту же энергию; их энергии сосредоточены в узком диапазоне (это же касается и их частот), обусловливающем естественную ширину линии. Практически из тысячи или более фотонов можно выделить несколько классов. Любой данный фотон принадлежит к тому или другому классу в зависимости от того, в каком из многих равных по ширине интервалов лежит его частота. Число фотонов в каждом классе как функция частоты изображается графически и образует колоколообразную кривую (рис. 114). Ширина этой кривой на высоте половины её максимума обозначается через Δν. Для гамма-квантов, излучаемых 𝙵𝚎⁵⁷ и обладающих энергией 14,4 кэв, отношение Δν/ν₀ весьма мало и равно 3⋅10⁻¹³. Чему равна естественная ширина линии Δν излучения ядер 𝙵𝚎⁵⁷ в герцах? Сравните естественную относительную ширину линии с относительным сдвигом частоты, вызываемым отдачей свободного атома железа. Сравните её также с относительным сдвигом частоты гамма-лучей в процессе без отдачи.

Открытие Мёссбауэром процессов «без отдачи» сделало, таким образом, возможным распоряжаться источниками излучения, частота которых имеет фантастически узкий разброс порядка 3⋅10⁻¹³. В одном из следующих упражнений (в 87) говорится о применении для регулируемого изменения относительной эффективной частоты источника излучения, приёмника или обоих вместе на величины порядка 10⁻¹³, вызванные движением (допплеровское смещение). Какие применения может найти излучение строго определённой частоты? Их множество. Эффект Мёссбауэра является, например, основой важных новых методов в физике твёрдого тела, молекулярной физике и биофизике. Можно обнаружить изменения естественной частоты излучения ядер 𝙵𝚎⁵⁷, обусловленные влиянием других соседних атомов или внешними магнитными полями, и изучить таким образом взаимодействие между атомами железа и окружающим его веществом кристалла (пример: различие частот излучения 𝙵𝚎⁵⁷ в железном образце и в кристаллической решётке карбида железа); изучить взаимодействие между атомом железа в молекуле с остальной частью последней (пример: сдвиг частоты 𝙵𝚎⁵⁷ для атомов железа, связанных в молекулах гемоглобина). ▼

86**. Резонансное рассеяние

Ядра железа 𝙵𝚎⁵⁷ в основном (нормальном) состоянии поглощают гамма-лучи с резонансной энергией 14,4 кэв значительно сильнее, чем гамма-лучи с несколько иными энергиями. Поглощаемая при этом энергия переходит во внутреннюю энергию ядер, переводя 𝙵𝚎⁵⁷ в «возбуждённое состояние». По истечении некоторого времени такие возбуждённые ядра вновь излучают гамма-лучи в некотором случайном направлении и вновь возвращаются в основное состояние. Итак, гамма-лучи, поглотившись из первоначального направленного пучка, испускаются вновь во всех направлениях. Поэтому число гамма-квантов, прошедших сквозь тонкую пластинку, содержащую 𝙵𝚎⁵⁷, будет при резонансной энергии 14,4 кэв меньше, чем при любых соседних значениях энергии. Такой процесс называют резонансным рассеянием. Покажите, что при попадании гамма-кванта с резонансной энергией 𝐸₀ в первоначально покоившийся свободный атом железа этот гамма-квант не может быть поглощён его ядром, так как тогда не могут выполняться одновременно закон сохранения импульса и закон сохранения энергии. Покажите, что оба закона сохранения выполняются, если атом железа принадлежит кристаллу с массой 1 г и поглощает резонансный гамма-квант в ходе процесса без отдачи, когда импульс падающего гамма-кванта распределяется по всему кристаллу. («Выполняются»? Для импульса — да, для энергии — нет. Однако относительное несоответствие энергий, эквивалентное относительному несоответствию частот, меньше 3⋅10⁻¹³, т.е. достаточно мало, чтобы ядро атома железа «не заметило» этого несоответствия и поэтому поглотило падающий гамма-квант). ▼

87**. Измерение допплеровского смещения по резонансному рассеянию

Рис. 115. Резонансное рассеяние фотонов.

В экспериментальной установке, изображённой на рис. 115, источник, содержащий возбуждённые ядра 𝙵𝚎⁵⁷, испускает (наряду с прочими формами излучения) гамма-кванты с энергией 𝐸₀ без отдачи. Поглотитель, содержащий ядра 𝙵𝚎⁵⁷ в основном состоянии, поглощает часть этих гамма-квантов также в процессе без отдачи, вновь испуская их затем во всех направлениях. Поэтому счётчик гамма-лучей, расположенный, как это изображено на рисунке, зарегистрирует уменьшение потока гамма-квантов в случае поглотителя, содержащего 𝙵𝚎⁵⁷ в основном состоянии, по сравнению со случаем поглотителя без таких ядер 𝙵𝚎⁵⁷ Пусть теперь источник движется в сторону поглотителя со скоростью β. Какой должна быть его скорость, чтобы на поглотитель попадали гамма-лучи с частотой, относительный сдвиг которой равен 3⋅10⁻¹³, что соответствует широте резонансной линии? Выразите ответ в см/сек. Увеличится или уменьшится число зарегистрированных счётчиком гамма-квантов при этих условиях? Что произойдёт с этим числом, если источник будет удаляться от поглотителя с той же скоростью? Сделайте примерный чертёж зависимости числа зарегистрированных гамма-квантов от скорости источника. Позволяет ли этот метод измерять абсолютную скорость источника в нарушение принципа относительности? ▼

88**. Проверка эффекта гравитационного красного смещения с помощью эффекта Мёссбауэра