Выбрать главу

Изучение термодинамических циклов позволило изыскивать верные пути в работе над усовершенствованием тепловых машин, над повышением их экономичности.

Развитие машинной техники и науки привело к созданию паровых двигателей различных типов. Некоторые из них применяют и сейчас на железнодорожном и водном транспорте. Но на смену им уже приходят новые типы двигателей — паровые турбины, двигатели внутреннего сгорания, электродвигатели, а также реактивные и ракетные двигатели, создание и усовершенствование которых шло и идет в ногу с развитием физической науки.

Гидромеханика и судостроение

К началу XIX в. парусные суда уже не могли обеспечивать перевозку грузов в количестве, необходимом для удовлетворения потребностей промышленности, так как использование ветра в качестве движущей силы не позволяло достигать высоких скоростей при большом водоизмещении судна.

С использованием паровых машин в качестве двигателей значительно возросли скорость и водоизмещение судов. Так, если скорость лучших парусных судов XVIII в. составляла 20–25 км/час, а водоизмещение 3–5 тыс. т, то пароходы XIX в. с гребными винтами имели скорость до 40 км/час при водоизмещении 8—10 тыс. т. Первые пароходы передвигались с помощью гребных колес и лишь впоследствии колесо заменили гребным винтом.

Увеличение скорости движения судов, а также замена гребных колес на гребные винты тесно связаны с разработкой теории о движении тел различной формы в жидкости и о силах, действующих при этом движении.

Всеми этими вопросами занимается гидромеханика — наука о законах движения жидкости и взаимодействия ее с твердыми телами.

Начало развития гидромеханики было положено еще Леонардо да (Винчи, Галилеем и Ньютоном, но их исследования в этой области носили лишь описательный характер и не всегда точно отражали сущность тех или иных явлений. Так, Ньютон, впервые сформулировав закон о пропорциональности силы сопротивления телу, движущемуся в жидкости, скорости движения этого тела, считал, что такое сопротивление обусловлено исключительно ударами частиц о носовую часть тела. В действительности же, как это было выяснено в дальнейшем петербургским академиком Эйлером и известным математиком Д. Бернулли, сопротивление при движении тела в жидкости зависит от вязкости последней и от возникновения вихрей, на образование которых Затрачивается значительная энергия. При этом существенную роль играет величина поперечного сечения тела, движущегося в жидкости или газе: чем больше это сечение, тем больше и сила сопротивления движению. Бернулли была исследована задача о протекании жидкости по трубе с переменным сечением с учетом силы тяжести. При этом выявилась интересная и важная закономерность: давление в жидкости тем меньше, чем больше скорость ее течения (рис. 2).

Рис. 2. При течении жидкости по трубе переменного сечения наименьшее давление будет в наиболее узкой части трубы

Почему так происходит? В чем причина такого, на первый взгляд, парадоксального явления?

Рассмотрим уравнение Бернулли, которое в упрощенном виде можно записать так:

Здесь Р — давление, ρ — плотность жидкости, v — скорость. Обозначение const указывает, что это некоторая постоянная величина («константа»).

Для того чтобы сумма этих двух слагаемых оставалась постоянной, необходимо, чтобы при уменьшении (или увеличении) одного из этих слагаемых другое слагаемое увеличивалось (или уменьшалось) на такую же величину.

Поскольку плотность жидкости — величина постоянная (жидкость почти несжимаема), то увеличение скорости ее течения должно уменьшать давление, и наоборот. Уравнение Бернулли выведено с помощью высшей математики; оно основывается на законе непрерывности течения и законе сохранения массы.

Эффект уменьшения давления в жидкости при увеличении скорости течения можно наблюдать, если в струю воды, направленную вверх, поместить легкий пробковый шарик. Такой шарик будет все время «стараться» находиться ближе к центру струи, где скорость ее течения максимальна, за счет давления со стороны более медленно движущихся слоев воды на границе струя — воздух.

Рис. 3. При движений двух судов вблизи друг друга они притягиваются

Такой ка первый взгляд «безобидный» эффект может привести к далеко не столь безобидным результатам. Известны случаи, когда два судна, движущиеся параллельным курсом на небольшом расстоянии друг от друга, сталкивались между собой вследствие того, что скорость потока воды между ними оказывалась больше скорости потока вне их. Такое увеличение скорости движения жидкости между судами объясняется тем, что «ворота» между кораблями, в которые должна пройти вода, сужаются и поэтому нужна большая скорость, чтобы всей массе воды пройти сквозь более узкие «ворота» (рис. 3).

Используя уравнение Бернулли, Н. Е. Жуковский, С. А. Чаплыгин и другие ученые создали теорию подъемной силы крыла самолета.

Запросы техники, которая стала особенно стремительно развиваться в начале XIX.в., привели к созданию новых отраслей гидромеханики, и в частности гидромеханики вязкой жидкости, теории так называемого пограничного слоя, который образуется перед носовой частью тела, движущегося в жидкости или газе. В дальнейшем теория пограничного слоя получила применение в расчетах, связанных с движением сверхзвуковых самолетов и баллистических ракет, а также при расчетах новых форм корпусов кораблей, формы лопаток газовых и водяных турбин и т. д.

Применяя законы гидромеханики и гидродинамики, в наши дни созданы совершенные по своим ходовым качествам скоростные суда на подводных крыльях, которые могут развивать скорость 80–90 км/час и выше. Это далеко не все примеры применения гидромеханики.

Развитие науки и техники всегда идет вместе, и эта органическая связь между ними как раз и обусловливает тот научный и технический прогресс и достижения, свидетелями которых мы сейчас являемся.

НОВЕЙШИЙ ЭТАП В РАЗВИТИИ ФИЗИКИ И ТЕХНИКИ

Современное развитие физики и техники характерно тем, что и в теоретической физике, и в технике за последние шестьдесят лет достигнуты значительные успехи в овладении силами природы и использовании их в интересах человека.

На службу человеку пришла атомная энергия; на повестку дня поставлен вопрос об использовании в мирных целях термоядерной энергии, запасы которой практически неисчерпаемы.

Создание теории относительности коренным образом изменило наши представления о пространстве и времени, продвинуло вперед исследования микромира, структуры атомов и атомных ядер, «элементарных» частиц материи и различных физических полей.

Успехи в области изучения электрических и магнитных явлений позволили совершить гигантский скачок в технике радиосвязи, передаче и обработке информации.

Освоение техники полупроводниковых приборов сделало возможным создание быстродействующих, малогабаритных и экономичных электронных вычислительных машин. Это позволило приступить к конструированию станков с программным управлением, различного рода самонастраивающихся систем, решать многие задачи, которые ранее не могли быть решены из-за необходимости проводить сложнейшие и громоздкие вычисления.

В настоящее время созданы совершенно новые источники света, отличающиеся огромной яркостью и экономичностью.