Выбрать главу

Являясь наиболее точкой и общей, теория относительности открывает поистине неограниченные возможности в покорении человеком бесконечных просторов Вселенной.

В самом деле, если, с точки зрения «старой» физики, максимальное расстояние, на которое может проникнуть в космос человек, определяется всего несколькими десятками световых лет (при условии, что космический корабль будет двигаться со скоростью, близкой к скорости света), то на основании эффекта замедления времени для движущейся ракеты, предсказанного теорией относительности, человек в течение своей жизни может как угодно далеко проникнуть в мировое пространство.

С точки зрения земного наблюдателя, время на ракете будет замедляться в раз, т. е. при приближении скорости ракеты v к скорости света с эффект замедления времени будет все более и более значительным.

Так, при скорости v = 0,9с время на движущейся ракете будет идти в 2,3 раза медленнее, при v = 0,99с — в 7,1 раза, а при v = 0,999с — в 22,3 раза. При этом необходимо заметить, что приведенные формулы справедливы лишь для случая, когда время разгона ракеты значительно меньше всего времени полета.

Каким же образом можно разогнать ракету до таких больших скоростей?

Этого можно добиться с помощью фотонных двигателей, в которых тяга создается за счет давления мощного потока светового излучения на зеркало-отражатель, установленный на ракете. В настоящее время получение необходимых для этой цели световых потоков еще не представляется возможным из-за целого ряда физических и технических трудностей, однако можно не сомневаться, что с развитием физики и техники постройка таких двигателей станет возможной и звездолеты понесут отважных космонавтов к мирам других солнц, отдаленных от нашей солнечной системы на десятки и сотни миллионов световых лет.

Другим примером применения теории относительности являются ускорители заряженных элементарных частиц вещества (электронов, протонов, ионов).

Чтобы овладеть энергией, заключенной внутри ядра атомов, необходима знать его внутреннее строение.

Рис. 7. Схема линейного ускорителя заряженных частиц

Для этой цели еще в 30-х годах нынешнего столетия начались работы по созданию ускорителей заряженных частиц. Бомбардируя атомные ядра быстро движущимися частицами, например электронами или протонами, и изучая рассеяние этих частиц на ядрах-мишенях, можно получить сведения о структуре ядра и о ядерных силах.

Наряду с линейными ускорителями (рис. 7), в которых ускоряемые частицы, двигаясь прямолинейно, только один раз проходят участок разгона внешним электростатическим полем, широко применяются циклические ускорители — циклотроны, бетатроны, синхрофазотроны и др.

В циклических ускорителях частицы движутся по спирали или по замкнутому кругу, многократно пролетая участки разгона, где на них воздействует ускоряющее электрическое поле. При этом заряженные частицы поворачиваются постоянным магнитным полем, перпендикулярным к плоскости траектории частицы. В циклотроне (рис. 8) частицы ускоряются переменным электрическим полем, подводимым к двум полым полудискам — дуантам. Двигаясь по спирали внутри дуантов, частица, пролетая в зазоре между ними, попадает в электрическое поле, в результате чего ее энергия увеличивается. Если частота переменного электрического поля, подводимого к дуантам, равна частоте обращения ускоряемых частиц в камере циклотрона, то говорят, что в этом случае имеет место резонанс и ускорение возможно.

Рис. 8. Схема циклического ускорителя заряженных частиц (циклотрон)

При скоростях частиц, близких к скорости света, начинают сказываться эффекты, предсказываемые теорией относительности, которые приводят к увеличению массы ускоряемой частицы.

Период обращения частицы будет изменяться и перестанет быть равным постоянному периоду Т ускоряющего электрического поля. Это приведет к нарушению резонанса, в результате чего дальнейшее ускорение частиц станет невозможным. Таким образом, приходится изменять частоту ускоряющего электрического поля, чтобы в течение всего времени ускорения имел место резонанс.

Ускорители, в которых используют такой принцип, называют синхроциклотронами. В них можно разгонять протоны до энергий в миллиард электроновольт, в то время, как максимальная энергия ускоренных частиц в циклотроне не может превышать 100–200 миллионов электроновольт.

Для получения энергий частиц в миллиарды и десятки миллиардов электроновольт применяют синхрофазотроны, в которых наряду с изменяющимся по частоте переменным электрическим полем применяют и изменяющееся во времени магнитное поле. Благодаря этому траектория ускоряемых частиц близка к окружности.

В настоящее время созданы синхрофазотроны, позволяющие ускорять протоны до энергии в 30 миллиардов электроновольт.

Из сказанного понятно, какое значение имеет теория относительности в области высоких энергий для дальнейшего углубления наших знаний о строении материи.

Электричество и электротехника

В настоящее время энергия электрического тока находит широкое применение. Трудно себе представить какую-либо отрасль промышленности, где бы не использовалась электроэнергия.

Из всех видов энергии электрическая энергия является самым удобным для применения ее в народном хозяйстве. Это объясняется возможностью передачи электрического тока на любые расстояния и сравнительно простыми способами преобразования электрической энергии в тепло, свет, механическую энергию, радиоволны и др.

Каким же образом электрическая энергия преобразуется в другие виды энергии?

Электрический ток есть направленное движение электрических зарядов — электронов.

Как известно, все вещества, в том числе и металлы, состоят из атомов или молекул, в структуру которых входят электроны — мельчайшие отрицательно заряженные частицы. В свободном состоянии атомы являются весьма прочными с механической точки зрения системами. Каждый отдельно взятый атом имеет свою конфигурацию электронных оболочек, в которых электроны занимают вполне определенные уровни энергии.

Согласно принципу Паули на каждом энергетическом уровне может находиться только вполне определенное число электронов, причем каждый из этих электронов должен обязательно отличаться от других каким-либо свойством. Таких свойств всего четыре:

— собственный вращательный момент электрона (спин);

— магнитный момент электрона;

— момент, связанный с вращением электрона относительно атомного ядра;

— потенциальная энергия относительно ядра.

При внешних воздействиях на атом со стороны других атомов, как это имеет место в жидких и твердых веществах, наружные, наиболее слабо связанные электроны могут отрываться от атомов, оставаясь внутри вещества.

Такие электроны называют свободными. В металлах свободных электронов очень много и они путешествуют от атома к атому. Совокупность электронов образует зону проводимости. Если металлический проводник не присоединен к источнику тока, т. е. если к нему не подведена некоторая разность потенциалов, то движение свободных электронов в проводнике является хаотическим, причем средняя скорость такого движения зависит от температуры металла.

При подаче на проводник разности потенциалов (т. е. напряжения) от какого-либо источника электрическое поле источника будет воздействовать на каждый «блуждающий» электрон, вызывая его перемещение в направлении поля.