Выбрать главу

Если немного порассуждать, то можно выяснить, что время f1 больше, чем t1, а время f2 меньше, чем t2.

Итак, подведем первые итоги нового взгляда на время.

Два физика изучали одни и те же события, только в разных лабораториях, разных системах отсчета, движущихся друг относительно друга. Они измеряли промежутки времени между этими событиями, а события состояли в испускании света и его приходе от передней и задней стен вагона. И вот оказалось, что сам промежуток зависит от того, в какой лаборатории эти события фиксируются. Это означает, что промежуток времени между двумя событиями есть величина относительная.

Да и само время оказывается относительным. Ведь что такое время, как не череда своих промежутков.

Нельзя просто сказать «сейчас такой-то час». К этому нужно добавить «в такой-то системе отсчета», чтобы высказывание приобрело смысл.

Открытие относительности времени вызвало настоящий переворот в физической науке. Оно означало коренную ломку самых фундаментальных, самых первичных и исходных представлений о мире, созданных всем предшествовавшим развитием науки и, прежде всего, классической механикой Галилея — Ньютона. Время перестало быть абсолютным — что же произошло тогда с классической механикой? Неужели крах после двух столетий торжества?

Нет, новейшая физика не отменила классическую механику. Очевидным образом обнаружилось, что механика Галилея и Ньютона не столь универсальна, как на то надеялись ее творцы, а за ними и все другие физики XVIII —XIX веков (и последние чаще всего даже в большей степени). Но вся классическая теория остается в силе, если рассматривать только такие движения, скорость которых много меньше скорости света. По сравнению с этими малыми скоростями скорость света столь велика, что фактически ее можно считать бесконечной. А при таком условии сводится на нет относительность одновременности (мы уже говорили об этом), а с ней и относительность самого времени вообще.

Новейшая теория указала границы и пределы применимости классических представлений: механике Галилея — Ньютона подвластны только относительно медленные движения. И в этих ясно осознаваемых границах классическая механика продолжает и до сих пор жить полнокровной жизнью, неизменно прибавляя все новые и новые успехи к и без того уже внушительному списку своих достижений.

Когда же нужно изучать быстрые движения или распространение электромагнитных волн, классической теории для этого уже явно недостаточно. Здесь требуется теория относительности, и чем ближе скорости движений к скорости света, тем заметнее и значительнее эффекты относительности, или, как говорят, релятивистские эффекты. В следующей главе мы расскажем о таких явлениях, где эти эффекты, и в первую очередь относительность времени, действуют в полную силу.

Классическая механика обрела свои рамки, нашла свое настоящее место в нашей системе знаний о физическом мире. Тем самым она получила и новое обоснование своим исходным предпосылкам. Она стала частным случаем новой, более общей теории, рамки которой много шире, а основания надежнее и глубже. Теория относительности включила в себя классическую механику в качестве своей не вполне точной, приближенной формы, достаточной для «работы» с относительно медленными движениями.

Вместе с тем — и это гораздо важнее — теория относительности произвела принципиальный пересмотр природы времени. Это было решительное преодоление догматизма и застоя в «принципиальных вещах». Это был огромный шаг вперед на пути к проникновению в самую сущность времени, которое стало теперь не только предметом описания, но и объектом прямого исследования — теоретического и экспериментального.

ГЛАВА 6

СОБСТВЕННОЕ ВРЕМЯ

Инерциальные лаборатории, которыми мы пользуемся в наших мысленных экспериментах, снабжены, как говорит Эйнштейн, «всеми мыслимыми физическими приборами». Из этих приборов самый важный для нас — часы, инструмент для измерения времени. С помощью часов мы отмеряем промежутки времени, фиксируем одновременность или неодновременность событий.

Относительность времени означает, очевидно, и относительность в самом ходе часов, в их ритме. В мире уже нет единого и всеобщего времени, которое заставляло бы все часы идти «в ногу» как по команде «раз-два, раз-два». Несколько совершенно одинаковых часов, никак не отличимых друг от друга, когда они стоят рядом в лаборатории, резко расходятся в своих показаниях, когда какие-то из них приходят в движение и летят относительно других со скоростью, приближающейся к скорости света.

Продолжая знакомство с различными свойствами относительного времени, мы выясним в этой главе, где одинаковые процессы идут быстрее — рядом с нами или в движущемся мимо нас вагоне поезда, в летящем самолете, на ракете. Мы узнаем о реальных, а не только мысленных экспериментах и наблюдениях, в которых изучается темп бегущего времени.

Время здесь и время там

Начнем с нового мысленного эксперимента, в котором, как и раньше, два физика ведут наблюдения в двух инерциальных лабораториях.

Пусть в вагоне «поездной» лаборатории имеются источник света, фонарик, который располагается на потолке, и прямо под ним на полу зеркало. Эксперимент состоит в том, что оба наших физика, каждый в своей лаборатории, будут следить за тем, как свет распространяется сверху вниз, от фонарика к зеркалу и обратно, от зеркала к фонарику.

Эксперимент проведен, и физик «поездной» лаборатории сообщает: «свет упал по вертикали на зеркало и, отразившись от него, прошел тот же путь в обратном направлении. Общий путь света равен удвоенной высоте вагона».

Иную картину наблюдал «полевой» физик: «Свет падал с потолка к полу по наклонной прямой и, отразившись от зеркала, проделал путь по другой наклонной прямой, так что

в общей сложности свет проделал путь в виде латинской буквы V». Это и понятно. Ведь пока свет шел от потолка к полу, пол и зеркало вместе с ним переместились вперед по ходу поезда. Чтобы достичь зеркала, свет должен был двигаться по наклонной прямой. После отражения свет устремился обратно к фонарику на потолке, но за время движения света от потолка к полу и обратно потолок, а с ним и фонарик переместились вперед по ходу поезда, и, чтобы догнать фонарик, свет двигался по наклонной прямой. Итог: общий путь света больше удвоенной высоты вагона».

Сопоставим эти сообщения. По измерениям «полевой» лаборатории свет прошел явно большее расстояние, чем по измерениям «поездной». Вместе с тем мы знаем, что скорость света одинакова для обеих лабораторий. Значит, с точки зрения «полевой» лаборатории свет путешествовал дольше, чем с точки зрения «поездной».

Время между двумя событиями, измеренное из разных систем отсчета, оказывается, таким образом, различным. В той системе, где сами эти события произошли, время между собы-

тиями меньше, чем в другой системе, которая движется относительно нее и из которой наблюдают те же события.

Последние два предложения специально составлены так, чтобы не пользоваться названиями лабораторий — «поездной» и «полевой». Ведь мы хорошо понимаем, что движение относительно, и потому «полевая» лаборатория покоится только относительно поля, но движется относительно поезда. Если эксперимент с фонариком и зеркалом произвести в «полевой» лаборатории, то мы получим от наших физиков в точности те же сообщения, только теперь они поменяются ролями. О вертикальном пути света сообщит «полевой» физик, а о V-образном — «поездной».