Выбрать главу

Если бы, однако, можно было заглянуть на большие расстояния, то есть в более далекое прошлое, мы, очевидно, обнаружили бы, что там (то есть тогда) плотность больше, чем вблизи (то есть сейчас). Снимок, сделанный в реальных лучах, показал бы, таким образом, Вселенную неоднородной по плотности: чем дальше от нас, тем плотнее. На таком снимке и само физическое пространство, в соответствии с общими принципами эйнштейновской теории, должно быть неоднородным по своим геометрическим свойствам.

Срезы времени

Итак, имеются два разных «снимка»: какой из них правильный? Казалось бы, второй, он соответствует действительной процедуре наблюдений. Но и первый (моментальный), хотя и не может быть получен непосредственно в наблюдениях, тоже показывает реальную Вселенную. Снимки сильно отличаются друг от друга и, прежде всего, тем что в одном случае космическая плотность и само пространство однородны, а в другом никакой однородности нет.

Различия касаются свойств видимой Вселенной в целом. Но если не уходить далеко, а ограничиться какой-то не очень большой окрестностью, оба снимка, очевидно, покажут приблизительно одно и то же. Различия, связанные с запаздыванием света, тем меньше, чем меньше область наблюдений. В действительности оба снимка правильные и друг другу не противоречат. Но их различие показывает, что, когда речь идет о больших объемах пространства и больших промежутках времени, само пространство и само время по-разному проявляют себя в разных наблюдениях.

Согласно принципам общей теории относительности, как время, так и пространство не абсолютны, их свойства не заданы раз навсегда, а зависят, как уже не раз упоминалось, от тяготеющих масс. Время и пространство не абсолютны еще и в другом смысле: они по-разному могут быть отделены друг от друга, выделены из единого четырехмерного пространства- времени.

Такое разъединение времени и пространства происходит для нас тогда, когда мы выбираем определенную систему отсчета и устанавливаем в ней приборы для измерения времени и расстояний. Наблюдения с помощью этих приборов дают нам сведения не о времени вообще и не о пространстве вообще, а именно о конкретном времени и конкретном пространстве, какими они представляются из нашей системы отсчета. В другой системе отсчета картина отдельно времени и отдельно пространства может оказаться совершенно иной. Одинаковыми остаются во всех системах отсчета лишь те данные, которые характеризуют пространство и время вместе, как единое целое (соответствующие физические величины называют инвариантами пространства-времени).

Проиллюстрируем разные способы разделения времени и пространства простым примером из геометрии. Представим себе обыкновенный цилиндр. Это объемное тело будет представлять для нас «единое трехмерное пространство». Из него можно выделить «двумерное пространство», произведя сечение цилиндра плоскостью. Такое двумерное пространство — это, так сказать, подпространство нашего «единого трехмерного пространства»; число измерений подпространства на единицу меньше. Результат выделения подпространства зависит от принятого способа сечения. В сечении можно получить фигуры разной формы, разной площади.

Если произвести сечение плоскостью, перпендикулярной оси цилиндра, то получим двумерное подпространство в виде круга. Если же рассечь цилиндр плоскостью, параллельной его оси, получим прямоугольник. Какое из двух сечений правильно передает свойства двумерного подпространства этого тела? Вопрос не имеет смысла. Двумерное подпространство не абсолютно, его можно выделить разными способами.

Нет ничего удивительного и в том, что трехмерное физическое пространство, подпространство единого четырехмерного пространства-времени, предстает перед нами разным на разных «снимках» Вселенной. Эти снимки дают разные сечения четырехмерного пространства-времени Вселенной. Снимок в реальных лучах нужно понимать геометрически как сечение световым конусом. Моментальный же снимок — сечение плоскостью постоянного космического времени.

Эти снимки Вселенной в разных срезах времени соответствуют разным системам отсчета, разным способам отделения времени от пространства. Плоскость постоянного космического времени дает срез в системе отсчета, связанной с самой расширяющейся Метагалактикой. Срез световым конусом соответствует другой системе отсчета. Эта система представляет собой как бы жесткую сетку, «привязанную» к земному наблюдателю, к нашей Галактике. Такая сетка не растягивается космологическим расширением. Напротив, она остается неизменной, и все галактики, кроме нашей собственной, «расползаются» относительно нее — они движутся по закону Хаббла.

Мы уже говорили о том, как выглядит пространство в этой системе отсчета — оно оказывается неоднородным. И время в этой системе отсчета иное, отличное от общего космического времени. Оно должно измеряться по часам, которые расположены всюду в пространстве на неизменных расстояниях от нас и друг от друга. Эти часы не разбегаются. А часы на разбегающихся га тактиках, когда мы смотрим на них из неподвижном системы отсчета, представляются отстающими от наших неподвижных часов. Так, разумеется, и должно быть по теории относительности: время в движущейся системе отсчета течет медленнее, чем в неподвижной.

Горизонт

Прямым свидетельством такого замедления времени служит красное смещение в спектрах излучения далеких галактик. Ведь красное смещение означает увеличение периода колебаний принятого света. Периоды же колебаний растягиваются из-за того, что по нашим часам любые колебания, а с ними и само время на движущихся относительно нас телах замедляются. Это эффект Доплера, о котором мы говорили в главе 6.

По закону Хаббла, чем дальше от нас галактика, тем больше скорость ее удаления от нас. Из-за этого красное смещение и замедление времени усиливаются с расстоянием. Рассматривая все более и более удаленные галактики, мы замечаем все большее и большее красное смещение и, следовательно, все более значительное замедление времени. Согласно космологической модели Фридмана, существует такое большое, но вполне определенное, конечное расстояние, на котором красное смещение становится бесконечно большим. Период принимаемого света оказывается при этом бесконечным, а его частота (величина, обратная периоду) обращается в нуль. С точки зрения наблюдений это означает, что источник света остановится для нас невидимым. Пусть его собственная мощность излучения и будет сколь угодно велика, все равно его нельзя увидеть.

Таким образом, можно говорить о существовании во Вселенной горизонта, в пределах которого только и возможны наблюдения. Расстояние до горизонта составляет 15 — 18 мил- миллиардов световых лет. Это путь, который свет успевает пройти за время от начала космологического расширения до современной эпохи.

О горизонте мы уже говорили в главе 7, когда речь шла о световом конусе. Конус прошлого служил горизонтом видимости, горизонтом событий. Природа космологического горизонта, по существу, та же: все дело в том, что за конечное время свет проходит конечный путь. То, что происходит вблизи космологического горизонта, очень похоже и на явления вблизи критической поверхности черной дыры (см. главу 8). Там тоже любой источник света, сколь бы ярким сам по себе он ни был, становится невидимым для удаленного наблюдателя, но на путь от критической поверхности до наблюдателя свету требуется бесконечное время.