Я сам туда попал в 1993 г. — тоже не самое легкое время было для математики. Что тогда происходило в экономике, Вы, полагаю, помните. Моей старшей был год. Учиться в очной аспирантуре...
- ...мало кто мог себе позволить.
— Да, это было невозможно. А Институт проблем передачи информации меня приютил и поддержал. Социально скромное положение младшего научного сотрудника было все же куда приемлемей положения аспиранта в университете. Научно, если бы не внимание Гриши и Роланда Львовича, то из меня никакого математика не вышло бы. Люди разъехались, семинары опустели. Только благодаря Грише мои первые робкие математические шаги приобрели и направление, и какую-то уверенность.
- Но ведь был уже Интернет, были книги в конце концов. Можно, наверное, было и по ним выучиться?
— Книги и Интернет я очень люблю, но не всем хорошим в себе им обязан. На самом деле потрясающе, до какой степени в математике живое человеческое общение незаменимо — при всех современных средствах связи, при современных средствах поиска информации. С одной стороны, мы люди, и какой-то человеческий импульс нам необходим даже для самых абстрактных занятий. С другой — удивительно тяжело передать какую-либо глубокую мысль из одной головы в другую. Можно снять трехмерное, четырехмерное видео, а резонанса, а значит и передачи информации, не произойдет. Когда мы с кем-то говорим, мы задействуем множество механизмов, которые помогают настроиться на волну собеседника. И тогда в голове наконец щелкает: о, счастье! Вот почему математикам просто необходимо встречаться друг с другом.
А. Окуньков на конференции в ИППИ РАН, август 2009 г.
- А как в личном общении передаются какие-то вещи философского плана, которые в статьях писать у математиков не принято?
— Постоянно. В научной мудрости, кстати, Александр Александрович остается непревзойденным. Многие его высказывания со мной остались на всю жизнь. Он, конечно, не Конфуций, не стремился говорить афоризмами, не то чтобы у нас на семинаре висела перетяжка со словами...
- «математика — царица всех наук»!
— Вот-вот, ничего такого не было. Но какие-то фразы, которые просто были частью его мыслительного процесса, на мой ум произвели совершенно неизгладимое впечатление. И я их до сих пор повторяю. Например, однажды он сказал: «Современные математики приходят на работу в кабинет и садятся доказывать теорему. Это ошибка. Классики науки так не делали, они считали и смотрели, что получится». То есть такое отношение к математике как к своего рода химии — смешали, бабахнуло, не бабахнуло.
И в том же ключе: «Легче обобщить пример, чем специализировать теорию». То есть догадаться, что какая-то общая теория применима к какой-то конкретной задаче, — это гораздо сложнее, чем развить общую теорию, опираясь на «один хорошо сосчитанный пример». Это, кстати, точные слова Александра Александровича: «один хорошо сосчитанный пример». Я на всю жизнь научился ценить такие примеры и нахожу в этом глубочайшую мудрость.
- Для практика вроде бы вещь очевидная?
— Я понимаю, это как если бы выпускник бизнес-школы находил глубочайшую мудрость в том, чтобы не тратить больше, чем зарабатываешь. Но, увы, как современным математикам, так и финансистам зачастую не приходит в голову стоять хотя бы одной ногой на земле.
А.М. Вершик и другие участники конференции в ИППИ РАН, август 2009 г. (Фото Н. Деминой)
- В чем разница между математикой, которую Вам открыли учителя, и математикой, в которой живете теперь Вы и которую Вы открываете уже своим ученикам?
— Есть вещи, которые практически не изменились, — это базовые, магистральные направления в развитии математики. Потому что математика — это вертикальная, логическая структура. Для того, чтобы кто-то возвел блистательный шпиль, нужно много отесанных или неотесанных глыб положить в основание этого здания. И только потом оно увенчается каким-то блистательным доказательством. Поэтому центральные проблемы математики меняются не на протяжении одного поколения, а на гораздо больших временных горизонтах. Если Вы посмотрите на проблемы Гильберта или «миллионные» задачи, то большинство из них эволюционировало на промежутке порядка ста лет. Как ни убыстряется темп развития математики, а основные ее направления меняются медленно.
- А что изменилось?
— То, как мы работаем, как мы идем к своей цели. Понятно, что много времени математики просто думают — это процесс, который трудно объяснить. И это думанье — а в хорошие дни прямо-таки мышление — периодически приводит к озарению. Это момент большого счастья. Но так бывает в жизни каждого математика, может быть, дюжину раз. А большую часть времени мы, как первопроходцы в джунглях, в темноте, с каким-то маленьким ножиком, с подручными средствами, пробираемся сквозь мглу неизвестно куда.