Выбрать главу

Но, к счастью, мощь этих подручных средств растет, и прорубаемся мы с их помощью все эффективнее. Тот «один хорошо сосчитанный пример», про который мы говорили раньше, обычно был записан карандашом в тетрадке. А теперь для всех сколько-нибудь рутинных вычислений у нас есть очень мощные и умные программы. А ведь вычисления — это, действительно основа. Как в физике эксперименты. Глядя на них, мы строим и проверяем наши догадки. Все равно, конечно, на них уходит много сил и времени: недели, а порой и месяцы, чтобы написать, отладить и дождаться ответа. Но посчитать подобной сложности пример старыми методами было бы, конечно, немыслимо.

- Это первое. А что еще изменилось?

— Когда прорубаемся в тростнике, мы часто имеем довольно смутное представление о том, что делают наши коллеги. Исторически много туннелей в математике было прорыто параллельно.

- То есть многие вещи переоткрывались, и не один раз? Но ведь обычно результаты публикуются моментально?

— Верно. Но математика столь велика, что никому не по силам знать ее всю. Даже в одной отдельной области уследить за новинками и удержать в памяти всю классику было реалистично еще, может быть, лет 20–30 назад. А что теперь? Теперь мы должны опираться на современные средства поиска информации, которые, надо сказать, очень помогают. Например, Американское математическое общество предлагает подписчикам электронную базу данных более-менее всех статей по математике с разнообразными и эффективными средствами поиска, рефератами и т.д.

Г. Ольшанский на конференции в ИППИ РАН

- А если то, что Вас интересует, другой ученый назовет другим словом? Вы же с ним не договаривались об обозначениях?

— Да, тогда простой контекстный поиск не поможет. Но есть гораздо более хитрые вещи.

Например, математика полна последовательностей. Скажем, нам надо заплатить /7 =1,2,3,... копеек пользуясь 1- , 2- , и 5-копеечными монетами. Сколькими способами это можно сделать? Это, конечно, просто элементарная иллюстрация, а не вопрос, который математиков действительно волнует, хотя мы часто и вынуждены искать способы заплатить ту или иную сумму. Итак, мы получаем последовательность 1,2,2,3,4,5,6,7,8,10,1 1,13,14,16,18, потому что, например, 5 копеек можно сложить как 5=2+2+1=2+1+1+1=1+1+1+1+1, итого четырьмя способами.

Хорошо, у нас есть последовательность, а что мы про нее можем сказать? Давайте введем ее в «Онлайн-энциклопедию целочисленных последовательностей» Нейла Слоэна. Мы узнаем, что у нее есть номер А000115, т.е. она уже людям встречалась, что, конечно, не удивительно. Что Вам может показаться удивительным: для этой последовательности есть простая формула, а именно, ее /7 -ый член есть ближайшее целое к ((N +4)2)/20. Например, для n=5 получаем 81/20 приблизительно равно 4. Мы бы, конечно, и сами об этом со временем догадались, но все-таки приятно, что кто-то уже за нас задачу решил. Мне лично эта энциклопедия помогала много раз, и не с воображаемыми задачами, а с настоящими, полевыми.

- Но есть еще другая проблема — проблема проверки результатов. Сейчас создаются специальные компьютерные программы, чтобы можно было проверять математические доказательства.

— Да, но, по-моему, лучше так объяснять глубокие вещи, чтобы та самая доска, о которой говорил Ольшанский, из равновесия не выходила. Чисто по-человечески, когда я вижу хорошую идею, для меня это гораздо убедительнее, чем компьютерный сертификат логичности. Цель математики, как и науки в целом, — не узнать ответ «да» или «нет» на все мыслимые вопросы, а в том, чтобы понять наш мир. Предположим, прилетели бы инопланетяне и сказали: «Гипотеза Римана верна, и вот формальное доказательство. Вы можете проверить на своей машине». Ну и чему мы, собственно говоря, научились от этого? Ничему не научились.

- Вы хотите сказать, что важно не просто формально получить доказательство, а важно то, чтобы это доказательство было естественно принято сообществом и осмыслено?

— Да. Доказательство — это не цель математики, а мера нашего понимания. Есть феномен, который Риман осознал. И это величайшее открытие. И мы его до сих пор очень плохо понимаем. Я, например, совсем не понимаю. Но даже мои замечательные коллеги, я думаю, не так хорошо понимают. Ну и какой бы мерой понимания было бы инопланетное доказательство?