Америка ему обязана многим. Большое количество молодых математиков из этой страны, которым было суждено сыграть значительную роль в развитии американской математики, переселились в Гёттинген в период с 1900 по 1914 год, чтобы учиться у Гильберта. Однако его взгляды, методы и постановки задач оказали влияние далеко за пределами круга лиц, черпавших своё вдохновение, обучаясь непосредственно под его руководством.
Гильберт сам помог автору настоящего обзора увидеть, что его работы довольно строго делятся на различные периоды, в каждый из которых он был всецело поглощен проблемами из одной конкретной области. Если он занимался интегральными уравнениями, то они означали для него всё; бросив какой-либо предмет, он отделывался от него полностью и переходил к другому. Именно таким своеобразным образом он достиг универсальности. Я различаю пять основных периодов:
* Теория инвариантов (1885–1893).
* Теория алгебраических числовых полей (1893–1898).
* Основания: а) геометрии (1898–1902); б) математики в целом (1922–1930).
* Интегральные уравнения (1902–1912).
* Физика (1910–1922).
Названия этих периодов несколько более конкретны, чем им следовало бы быть. Не все алгебраические достижения Гильберта связаны с инвариантами. Его работы по вариационному исчислению отнесены к интегральным уравнениям. Есть, конечно, и некоторые частичные смешения периодов, и несколько заблудших детей, нарушающих законы времени, самый поразительный из них — его доказательство теоремы Варинга в 1909 году.
Его парижское выступление «Математические проблемы» охватывает все области нашей науки. Пытаясь приподнять завесу над ожидающим нас будущим, он поставил и обсудил двадцать три нерешённые проблемы, которые, как мы видим теперь, на самом деле играли важную роль все последующие сорок с лишним лет. Математик, решивший одну из них, занимал тем самым почётное место в математической общине.
ЛИТЕРАТУРА
Gesammelte Abhandlungen Гильберта были изданы в трёх томах Ю. Шпрингером в Берлине, 1932–1935 годы. Это издание содержит его Zahlbericht, но не включает две его книги:
Grundlagen der Geometrie, 7. Aufl., Leipzig, 1930;
Grudzuge einer allgemeinen Theorie der linearen Integralglelchungen, Leipzig und Berlin, 1912.
Гильберт является соавтором следующих работ:
R.Courant und D.Hilbert, Methoden der mathematischen Physik, Berlin, Bd. 1, 2. Aufl., 1931; Bd. 2, 1937;
D.Hilbert, W.Ackermann, Grundzuge der theoretischen Logik, Berlin, 1928;
D.Hilbert und S.Cohn-Vossen, Anschauliche Geometrie, Berlin, 1932;
D.Hilbert und Р.Bernays, Grundlagen der Mathematik, Berlin, Bd. 1, 1934; Bd. 2, 1939.
Собрание его трудов содержит статьи Б. Л. ван дер Вардена, X. Хассе. А. Шмидта, П. Бернайса и Э. Хеллингера о работе Гильберта в области алгебры, теории чисел, оснований геометрии и арифметики, интегральных уравнений. В них прослеживается дальнейшее развитие этих областей и даются подробные библиографические ссылки. Читатель может также обратиться к номеру Die Naturwissenchaften 10 (1922), 65–104, посвящённому Гильберту. В нём содержится обзор его работ до 1922 года. Кроме того, укажем на статью Бибербаха (L.Bieberbach), Ueber den Einfluss von Hilberts Pariser Vortrag uber «Mathematische Probleme» auf die Entwicklung der Mathematik in den letzten dreissig Jahren, Die Naturwissenschaften 18 (1930), 1101–1111. О. Блюменталь описал жизнь Гильберта (Собрание трудов, т. 3, стр. 388–429).
Я опускаю все ссылки на литературу, указанную в этих статьях.
ТЕОРИЯ ИНВАРИАНТОВ
Классическая теория инвариантов имеет дело с многочленами J = J(x1, ..., xn), зависящими от коэффициентов x1, ..., xn одной или нескольких форм от данного числа переменных η1, ..., ηg. Каждая линейная подстановка s с определителем, равным 1, применённая к g аргументам, индуцирует некоторое линейное преобразование U(s): x → x' = U(s)x переменных коэффициентов x1, ..., xn. При этом многочлен J = J(x1, ..., xn) переходит в новый многочлен J(x'1, ..., x'n) = Js(x1, ..., xn). J называется инвариантом, если Js = J для всех s. (Ограничение унимодулярными преобразованиями s позволяет нам избежать более сложного понятия — относительного инварианта и рассматривать не обязательно однородные многочлены, благодаря чему можно вводить в рассмотрение кольцо инвариантов.) Классическая проблема инвариантов является частным случаем общей проблемы инвариантов, в которой s принадлежит произвольной абстрактной группе Γ, а правило s → U(s) определяет представление этой группы (т.е. закон, сопоставляющий каждому элементу s ∈ Γ некоторое линейное преобразование U(s) n переменных x1, ..., xn, причем так, что произведению элементов группы соответствует композиция преобразований). Развитие этой теории до Гильберта привело к двум основным теоремам, доказанным, однако, лишь в весьма специальных случаях.