Выбрать главу

Теорема (A) Гильберта служит краеугольным камнем оснований общей теории алгебраических многообразий. Предположим, далее, что k — поле комплексных чисел. Алгебраическое многообразие, по-видимому, естественно определять как подмножество n-мерного координатного пространства, состоящее из общих решений системы алгебраических уравнений f 1 = 0, ..., f h = 0 ( f iIkx). Согласно теореме (А) в равной степени можно рассматривать и бесконечные системы уравнений. Пусть Z( f 1, ..., f h) обозначает множество точек x = (x1, ..., xn), в которых все f i, а значит и каждый многочлен из идеала F = { f 1, ..., f h}, одновременно обращаются в нуль. Любой элемент gI{ f 1, ..., f h} обращается в нуль на Z( f 1, ..., f h), однако обратное в общем случае неверно. Например, x1 обращается в нуль там же, где и x13 тем не менее его нельзя представить в виде x13·q(x1, ..., xn). На языке алгебраической геометрии мы имеем здесь дело с простой плоскостью x1 = 0 и тройной плоскостью, хотя множество точек в обоих случаях одно и то же. Таким образом, на самом деле под алгебраическим многообразием мы понимаем полиномиальный идеал, а не множество его нулей. Но, хотя мы и не можем надеяться, что каждый многочлен g, равный тождественно нулю на множестве Z( f 1, ..., f h) = Z(F), будет принадлежать идеалу F = { f 1, ..., f h}, мы можем рассчитывать, что по крайней мере некоторая его степень войдет в F. «Nullstellensatz» 2 Гильберта утверждает, что так и будет если только k есть поле комплексных чисел. В случае произвольного поля коэффициентов k надо ещё потребовать, чтобы координаты рассматриваемых точек x принадлежали полю k или его некоторому алгебраическому расширению. Очевидно, что Nullstellensatz относится к основам самого понятия алгебраического многообразия 3.

В действительности же Гильберт использовал эту теорему как вспомогательное средство для своих исследований по инвариантам. Так как нам приходится иметь дело только с полной линейной группой, мы будем рассматривать только однородные инварианты, не оговаривая этого особо. Отбросим константы (инварианты степени 0). Предположим, что мы нашли ? непостоянных инвариантов J1, ..., J? таких, что каждый другой такой же инвариант обращается в нуль на множестве их общих нулей. Разумеется, в качестве таких инвариантов можно взять базис идеала, порождённого всеми непостоянными инвариантами, но мы сможем найти их и значительно более дешёвым способом. Действительно, одно красивое рассуждение Гильберта показывает, что если существует непостоянный инвариант, не обращающийся в нуль в данной точке x = x0, то существует и другой инвариант с тем же свойством, вес которого не превосходит некоторой априорной величины W (например, W = 9n(3n + 1)8 для инвариантов тернарной формы степени n). Таким образом, J1, ..., J? могут быть выбраны из инвариантов, вес которых не превышает W, и, таким образом, поддаются явному алгебраическому построению.

Когда Гильберт опубликовал своё доказательство конечности базиса идеала, формалист Гордан, считавшийся в то время королём инвариантов, воскликнул: «Это — не математика, это — теология!» Гильберт всю жизнь протестовал против недооценки доказательств существования, составляющих «теологию». Однако мы видели, как более детальное исследование позволило ему удовлетворить конструктивистским требованиям Гордана. Применяя процесс Кэли и свою Nullstellensatz, ему удалось показать, кроме того, что каждый инвариант J является целой алгебраической (но не всегда рациональной) функцией от инвариантов J1, ..., J?, которая удовлетворяет уравнению

J e + G1J e–1 + ... + Ge = 0,

где G — полиномы от J1, ..., J?. Тем самым, алгебраические расширения такого сорта позволяют перейти от J1, ..., J? к базису всей области целостности. После этого известные алгебраические приёмы, аналогичные тем, которые были созданы Кронекером, позволяют дать искомое явное построение.