Выбрать главу

После формальных исследований, идущих от Кэли и Сильвестра к Гордану, Гильберт открыл новую эпоху в теории инвариантов. Действительно, его новые идеи и мощные методы не только позволили этой области идти в ногу с новейшими алгебраическими достижениями, обязанными Кронекеру и Дедекинду, но и внесли в неё такой вклад, который позволил почти полностью решить все проблемы, во всяком случае относящиеся к случаю полной линейной группы. С вполне оправданной гордостью он завершает свою работу Ueber die vollen Invariantensysteme словами: «Таким образом, я верю, что важнейшие цели теории функциональных полей, образованных инвариантами, достигнуты», после чего покидает сцену 4.

Среди исследований, ведущихся с тем пор, как Гильберт ушёл из этой области, следующие два направления представляются самыми важными: (1) Процесс усреднения, применявшийся выше для конечных групп, был перенесён на непрерывные компактные группы. Основываясь на этих трансцендентных методах, Адольф Гурвиц разобрал случай вещественной ортогональной группы. Этот метод оказался чрезвычайно полезным. Простое замечание, что инварианты вещественной ортогональной группы eo ipso 5 являются также инвариантами комплексной ортогональной группы, показывает, каким образом эти результаты могут быть перенесены даже на некомпактные группы и, в частности, на все полупростые группы Ли. (2) В настоящее время теория инвариантов для произвольных групп нашла своё естественное место в рамках теории представлений групп линейными подстановками, причём этим развитием мы больше всего обязаны Г. Фробениусу.

Хотя первая основная теорема была доказана для широкого класса групп ?, мы до сих пор не знаем, верна ли она для любой группы. Вскоре обнаружилось, что все попытки доказать её в такой общности не приводят к успеху. Многообещающий алгебраический подход к этой проблеме указан под номером 14 в списке математических проблем, поставленных Гильбертом в Париже.

Остановившись столь подробно на теории инвариантов Гильберта, мы можем только вкратце упомянуть про его другие, более разрозненные алгебраические достижения. Первая работа, в которой проявился настоящий характер молодого алгебраиста, относилась к выяснению условий, при которых вещественная форма представляется в виде суммы квадратов таких форм. В частности, в ней исследовался вопрос о том, является ли очевидное необходимое условие положительной определённости также и достаточным. С помощью изобретательных рассуждений, основанных на использовании непрерывности, а также алгебраических конструкций, Гильберт нашёл три специальных случая, в которых ответ на этот вопрос положителен, среди них, разумеется, случай положительно определённой квадратичной формы. Во всех остальных случаях Гильберт построил контрпримеры. Похожие методы встречаются в двух работах, посвящённых привлекательной проблеме нахождения максимального числа и расположения вещественных овалов алгебраической кривой и поверхности. Гильберт высказал гипотезу, что для любого числа переменных каждая рациональная функция с вещественными (или рациональными) коэффициентами является суммой квадратов таких функций при условии,что все её значения при положительных значениях аргументов являются положительными. В своих Grundlagen der Geometrie он отметил значение этого факта для геометрических построений с помощью линейки и «Eichmass» 6. Позднее О. Веблен предложил в качестве основы для различения положительных и отрицательных элементов в любом поле аксиому, гласящую, что никакая сумма квадратов не равна нулю. Независимо от него Э. Артин и О. Шрайер развили подробную теорию таких «вещественных полей», с помощью которой первому из них удалось доказать гипотезу Гильберта 7.

В заключение я упомяну про теорему Гильберта о неприводимости, утверждающую, что после подстановки некоторых целочисленных значений во все переменные, кроме одной, неприводимый многочлен определяет неприводимый многочлен от одной переменной.

Кроме того, стоит упомянуть его работу о решении уравнения девятой степени с помощью функций от минимального числа переменных. Эти работы послужили началом многих современных алгебраических работ (Э. Нётер, Н. Чеботарёв и др.). Наконец, следует отметить, что на фундаменте, заложенном Гильбертом, Э. Ласкер и Ф. С. Маколей создали детальную теорию полиномиальных идеалов, позволившую Э. Нётер развить общую аксиоматическую теорию идеалов. Таким образом, в области алгебры, как и в других областях, понятия, введённые Гильбертом, сыграли большую роль в дальнейшем развитии.