Выбрать главу

Греки представляли себе геометрию как дедуктивную науку, которая занимается чисто логическими выводами из небольшого количества заранее установленных аксиом. Этой программы придерживались как Евклид, так и Гильберт. Однако список аксиом Евклида был далеко не полным, у Гильберта же он полон и его рассуждения не содержат логических пробелов. Евклид пытался дать описательное определение основных пространственных объектов и соотношений, участвующих в его аксиомах; Гильберт же отказался от такого подхода. Всё, что нам надо знать об этих основных понятиях, содержится в аксиомах. Аксиомы, каковы они есть, являются, по сути дела, их неявными (и по необходимости неполными) определениями. Евклид считал аксиомы очевидными, его интересовало реальное пространство физического мира. Однако в дедуктивной системе геометрии очевидность и даже истинность аксиом несущественны; они служат лишь предположениями, из которых выводятся логические следствия. В самом деле, существует много различных материальных интерпретаций основных понятий, для которых аксиомы становятся верными. Например, аксиомы n-мерной евклидовой векторной геометрии соблюдаются, если брать в качестве вектора распределение постоянного тока в электрической цепи, состоящей из n проводников, соединенных в некоторых точках разветвления, и принять в качестве квадрата длины вектора джоулево тепло, выделяемое током за единицу времени. При построении геометрии на аксиоматической основе стремятся к максимальной экономии, для чего проясняют роль различных групп аксиом. Взятые в своём естественном порядке, это аксиомы инциденции, порядка, конгруэнтности, параллельности и непрерывности. Например, если это возможно, теорию геометрического подобия или площадей многоугольников строят без аксиом непрерывности.

Во всем этом Гильберт не был одинок, однако в его исполнении чувствуется рука мастера. Выдающейся фигурой среди его предшественников является М. Паш, который прошел длинный путь от Евклида, выявив скрытые аксиомы порядка и с методической ясностью построив дедуктивную систему проективной геометрии (1882 год). Другими из них были Ф. Шур из Германии и представители блистательной школы итальянских геометров (Пеано, Веронезе), которые также принялись за разработку этих вопросов. В выборе основных понятий Гильберт более консервативен, чем итальянцы: вполне сознательно он придерживается традиций Евклида с его тремя классами неопределяемых элементов — точек, прямых, плоскостей — и его отношениями инцидентности, порядка и конгруэнтности сегментов и углов. Это придает особую прелесть книге Гильберта, как будто вы глядите в лицо, хорошо знакомое и в то же время величественно преображенное.

Одно дело — построить геометрию на прочном основании, и совсем другое — исследовать логическую структуру построенного сооружения. Если я не ошибаюсь, Гильберт был первым, кто мог свободно переходить на этот более высокий, «метагеометрический» уровень; он систематически изучает взаимную независимость своих аксиом и устанавливает независимость некоторых из самых фундаментальных геометрических теорем от той или иной ограниченной группы аксиом. Его метод основан на построении моделей: показывается, что модель противоречит одной из аксиом и удовлетворяет требованиям всех остальных аксиом, из чего следует, что первая не может быть следствием остальных. Одним из выдающихся примеров этого метода, известным с давних пор, служит модель неевклидовой геометрии Кэли—Клейна. Для неархимедовой геометрии Веронезе Леви-Чивита построил незадолго до Гильберта удовлетворительную арифметическую модель. Вопрос о непротиворечивости тесно связан с вопросом о независимости. Относящиеся сюда общие идеи кажутся нам теперь почти банальными, настолько радикальным оказалось их влияние на наше математическое мышление. Гильберт высказал их на ясном и точном языке, воплотив их в своей книге, подобной кристаллу: монолитное целое с многими гранями. Её художественные качества, безусловно, способствовали её успеху как шедевру научной литературы.

При построении своих моделей Гильберт демонстрирует поразительную по разнообразию изобретательность.

Самыми интересными примерами мне кажутся, во-первых, тот, где он показывает, что теорема Дезарга не следует из аксиом инцидентности на плоскости, но аксиомы инцидентности на плоскости вместе с теоремой Дезарга позволяют вложить плоскость в пространство более высокой размерности, в котором будут выполняться все аксиомы инцидентности, и, во-вторых, тот пример, где он решает вопрос о необходимости аксиомы непрерывности Архимеда для того, чтобы восстановить все аксиомы конгруэнтности, исключив из них возможность отражений.