Выбрать главу

?

?

Kmn xm = xn.

m

И таким образом он получает собственную функцию для K(s, t) с собственным значением ?. Вскоре после этого под влиянием идей Гильберта Э. Фишер и Ф. Рисс доказали свою хорошо известную теорему о том, что пространство всех функций x(s) с интегрируемым по Лебегу квадратом удовлетворяет всем свойствам полноты гильбертова пространства и, тем самым, с помощью полной ортонормированной системы un(s) эти пространства изоморфно отображаются друг на друга. Я упоминаю эти подробности ввиду того, что историческая последовательность событий может быть забыта многими из более молодых математиков, для которых гильбертово пространство представляет то абстрактное понятие, которое не различает эти свои две реализации — пространство интегрируемых с квадратом функций x(s) и пространство последовательностей с суммируемым квадратом (x1, x2, ...). Я думаю, что Гильберт вполне разумно придерживался рамок непрерывных функций там, где не было настоящей потребности вводить общие понятия Лебега.

Быть может, самым великим достижением Гильберта в области интегральных уравнений является его обобщение теории спектрального разложения с вполне непрерывных на так называемые ограниченные квадратичные формы. Он находит, что в этом случае спектр будет содержать точки накопления и, кроме того, будет присутствовать и непрерывная часть. И снова Гильберт использует непосредственный переход к пределу, увеличивая число переменных ad infinitum 27. И как прежде, вскоре после этого были найдены простые доказательства его результатов.

Расширяя таким образом границы этой общей теории, он не упускает из виду обыкновенные дифференциальные уравнения и уравнения в частных производных, которые дали ей начало. Одновременно с молодым итальянским математиком Эудженио Элиа Леви он развил метод параметрикса, перебрасывающий мост между дифференциальными и интегральными уравнениями. Для заданного эллиптического дифференциального оператора второго порядка ?* параметрикс K(s, t) представляет собой нечто вроде качественного приближения к функции Грина, как и последняя, завися от значений аргумента s и параметра t. Предполагается, что он обладает регулярной особенностью при s = t, так что неоднородное уравнение ?* = f для

u = K?, u(s) =

?

K(s, t) ?(t) dt

сводится к интегральному уравнению ? + L? = f относительно функции плотности ? с ядром L(s, t) = ?s*K(s, t), достаточно регулярным при s = t, чтобы к нему была применима теория Фредгольма. Здесь важно отбросить предположение, что функция K удовлетворяет уравнению ?*K = 0, так как в общем случае неизвестно фундаментальное решение для данного дифференциального оператора ?*. Чтобы не заботиться о граничных условиях, Гильберт предполагает, что область интегрирования представляет собой компактное многообразие типа сферической поверхности. В зтом случае он показывает, что его метод применим, если параметрикс не только имеет регулярную особенность, но и является симметричным относительно аргумента и параметра.

Сказанного вполне достаточно, чтобы стало ясным, что на территории анализа была открыта золотая жила, которая сравнительно легко поддавалась разработке и которая не скоро должна была истощиться. Линейные уравнения с бесконечным числом неизвестных явились предметом дальнейших исследований (Э. Шмидт, Ф. Рисс, О. Тёплиц, Э. Хеллингер и другие); непрерывный спектр и его появление в интегральных уравнениях с «особыми» ядрами требовали более тщательного анализа (Э. Хеллингер, Т. Карлеман); на обыкновенные дифференциальные уравнения второго и более высокого порядка с регулярными и особыми граничными условиями также обратили должное внимание (А. Кнезер, Э. Хильб, Дж. Д. Биркгоф, М. Бохер, Я. Д. Тамаркин и многие другие) 28. Стало возможным установить асимптотические законы распределения собственных значений, что было важно для вопросов термодииамики излучения (Г. Вейль, Р. Курант). Разложения по ортогональным функциям изучались независимо от их применений к дифференциальным и интегральным уравнениям. По-новому были освещены непрерывные дроби Стилтьеса и проблема моментов. Самые настойчивые приступили к атаке на нелинейные интегральные уравнения. Вокруг Гильберта организовалась большая международная школа математиков, а интегральные уравнения вошли в моду не только в Германии, но и во Франции, где им уделяли внимание такие великие мастера, как Э. Пикар и Гурса, в Италии и по другую сторону Атлантического океана. Было написано много как хороших, так и посредственных работ. Общим результатом всей этой деятельности стало значительное изменение во взглядах на анализ.