Это письмо Клейна застало бедного Гильберта в тяжёлый для него месяц. Доктор нашёл, что его болезнь связана с акклиматизацией, «тогда как я думаю, что это просто ужасное желудочное отравление от H2SO4, которую здесь принято пить в виде слабого и бледного напитка под названием вина». Визиты прекратились, а переписывание работы должно было быть отложено. Ему удавалось только заставить себя ходить на лекции и собрания. «Всё приостанавливается, когда неподходящее состояние человеческого организма даёт о себе знать...»
Быть может, он также немного скучал о своей родине.
В конце июня, возвращаясь в Кёнигсберг, он был счастлив и полон энтузиазма. Остановившись в Гёттингене, он отчитался Клейну в своей парижской деятельности. Это было его первым посещением университета, и он был очарован маленьким городком и его столь живописными холмистыми окрестностями. Всё это так отличалось от суетливого Кёнигсберга и окружающих его плоских равнин. По дороге он сделал также остановку в Берлине, где «он посетил всё, что имеет хоть какое-нибудь отношение к математике». В частности, даже грозного Леопольда Кронекера.
Это был маленький человек, не более пяти футов роста, который, удачно устроив свои дела, связанные с сельским хозяйством, обеспечил семью и в возрасте 30 лет удалился от дел с тем, чтобы посвятить остаток жизни своему любимому занятию — математике. Будучи членом Берлинской Академии, он регулярно пользовался своим правом читать лекции в университете. Теперь ему было 63 года, и только недавно, вместо ушедшего в отставку Куммера, он стал официальным профессором.
Кронекеру принадлежат очень важные достижения в математике и особенно в высшей алгебре. Однако, как он однажды заметил, ему пришлось потратить больше времени на обдумывание философских проблем, чем математических. В последнее время он раздражал своих коллег-математиков, особенно немецких, громко выражаемыми сомнениями о законности оснований большей части современной математики. Главной его заботой было понятие арифметического континуума, лежащего в основе анализа. Континуум есть совокупность вещественных чисел — положительных и отрицательных — целых, дробных, рациональных или иррациональных, каждое из которых математики изображают одной из точек на прямой. Хотя вещественные числа в математике использовались уже давно, только в прошлом столетии их природа была тщательно исследована и объяснена точным и строгим образом. Это было сделано в работах Коши и Больцано, а совсем недавно в работах Кантора и Дедекинда.
Эти новые работы не устраивали Кронекера. По его убеждению, в математике ничего не существует, кроме того, что может быть построено с помощью конечного количества положительных целых чисел. С этой точки зрения дроби существуют, так как они представляются в виде отношения двух положительных чисел; в то же время иррациональные числа, например ?, не существуют, так как их можно представить только бесконечным рядом дробей. Однажды, обсуждая с Линдеманом его доказательство трансцендентности числа ?, Кронекер заявил: «Что пользы в вашем замечательном исследовании числа ?? Зачем заниматься такими проблемами, когда иррациональные числа не существуют?» Хотя он ещё не сделал своего замечания: «Бог создал натуральные числа, всё остальное — дело рук человеческих», но в частных беседах уже заявлял о новой программе, предназначенной «арифметизировать» математику и исключить из неё все «неконструктивные» понятия. «Если же я этого сделать не сумею, — говорил он, — то это сделают те, кто придёт после меня».
Обладая многими привлекательными чертами, Кронекер в то же время делал ядовитые и очень личные нападки на математиков, чьи математические работы он не одобрял. («На самом деле, — вспоминал Минковский в своем письме к Гильберту, — я не слышал много хорошего о Кронекере даже в Берлине».) Выдающийся старый Вейерштрасс был доведён почти до слёз замечаниями Кронекера о «некорректности всех выводов, с которыми сейчас имеет дело так называемый анализ». Легко возбудимый, чувствительный Кантор из-за нападок Кронекера на теорию множеств был полностью сломлен духовно и должен был искать убежище в психиатрической лечебнице.
Гильберт был предупреждён о возможном неприветливом приёме у Кронекера, но, к удивлению, был принят — писал он Клейну — «очень дружелюбно».
Вернувшись в Кёнигсберг, он серьёзно занялся хабилитацией. Работа, которую он готовил, была также посвящена теории инвариантов, однако ставила перед собой значительно более серьёзные цели, чем обычные докторские диссертации. Одному математику, которому позже пришлось изучать в свои студенческие годы «каждую строчку» Гильберта, показалось, что эта работа основывалась на удивительно ложном пути: «Она начинается с утверждения, что представляет собой важнейшую точку зрения, а затем просто переливает из пустого в порожнее. Из неё ничего не вышло... Я всегда удивлялся, что в течение нескольких лет Гильберт находился в тупике, быть может из-за слишком формального подхода, которому он, возможно, был обязан своим контактом со Штуди».