Выбрать главу

Ответ, к которому он пришёл, состоял в том, что такая система форм всегда существует.

Это сенсационное доказательство существования конечного базиса системы инвариантов основывалось на одной лемме, или вспомогательной теореме, о существовании конечного базиса модуля, математическую идею которой он почерпнул при изучении работ Кронекера. Лемма была такой простой, что казалась почти тривиальной. Тем не менее доказательство общей теоремы Гордана являлось её непосредственным следствием. Эта работа была первым примером черты, характерной для мышления Гильберта, — «естественная наивность мысли, не покоящаяся на авторитете или предшествующем опыте», как выразил её позже один из его учеников.

Как только в декабре вышло из печати доказательство теоремы Гордана, Гильберт сразу же отослал один экземпляр Артуру Кэли, который полвека назад заложил основы этой теории. («Теория алгебраических инвариантов, — писал позже один математик, — появилась наподобие Минервы: взрослая дева, покрытая блестящими доспехами алгебры, она выросла прямо из божественной головы Кэли. Её Афинами, которыми она правила и которым она служила как охраняющая и благодетельная богиня, была проективная геометрия. С момента её рождения она была призвана защищать предложение, что все проективные системы координат эквивалентны...»)

«Дорогой сэр, — вежливо отвечал Кэли из Кембриджа 15 января 1889 года, — я должен поблагодарить Вас за экземпляр Вашей заметки... Мне кажется, что эта идея чрезвычайно важна и полезна и что она должна привести к доказательству теоремы об инвариантах; однако я всё ещё не могу поверить, что у Вас есть такое доказательство».

Однако 30 января, получив за это время два письма от Гильберта с подробными объяснениями, Кэли поздравлял молодого немца: «Моя трудность имела априорный характер, я думал, что подобный процесс можно было бы применить также и к полуинвариантам, а это оказывается не так; теперь мне совершенно ясно... Я думаю, что Вы нашли решение великой проблемы».

Гильберт решил проблему Гордана способом, очень напоминающим тот, которым Александр Македонский развязал гордиев узел.

В Гордиуме (рассказывает нам Плутарх) он увидел знаменитую колесницу, привязанную верёвками, сделанными из коры кизилового дерева. Согласно преданиям местных жителей, развязавший этот узел овладеет мировой империей. Большинство авторов рассказывают, что Александр, поняв, что он не сможет развязать узел, концы которого были секретно перевязаны и спрятаны внутрь, разрубил его на части своим мечом. Однако, согласно Аристотелю, он легко с этим справился, вынув только гвоздь из дышла, к которому было привязано ярмо, и после этого снизу вытянув само это ярмо.

При доказательстве конечности базиса системы инвариантов не использовалось его явное построение, как это пытались сделать Гордан и другие. Не нужно было даже указывать на метод его построения. Всё, что требовалось, — это доказать, что конечный базис, по логической необходимости, обязан существовать, ибо в противном случае получается противоречие. Именно это и сделал Гильберт.

Реакция некоторых математиков напоминала реакцию фригийцев на то, как Александр «развязал» узел. Они совсем не были уверены, что ему удалось это сделать. Гильберт не построил самого базиса и не дал способа его построения. Его доказательство теоремы Гордана нельзя было использовать для получения конечного базиса системы инвариантов даже какой-нибудь одной алгебраической формы.

Линдеман нашёл методы своего молодого коллеги «unheimlich» — неудобными, чудовищными, сверхъестественными. По-видимому, только Клейн оценил всю силу его работы — «абсолютно простой и потому логически безупречной», — и именно в это время он решил, что при первой же возможности должен заполучить Гильберта в Гёттинген. Впервые после долгого математического молчания громкий голос Гордана раздался в математическом мире: «Das ist nicht Mathematik. Das ist Theologie» 16.

Теперь Гильберт открыто выступил в общей полемике о природе математического существования, которая была начата Кронекером. Кронекер настаивал, что без построения не может быть существования. Для последнего, как и для Гордана, доказательство Гильберта конечности базиса системы инвариантов было просто не математикой. В противоположность этому Гильберт всю жизнь утверждал, что предложение, любое следствие которого непротиворечиво, должно считаться истинным.