Гильберт начал год новым доказательством трансцендентности чисел е (впервые доказанной Эрмитом) и ? (доказанной Линдеманом). Его доказательство представляло значительный прогресс по сравнению с прежними и было удивительно простым и прозрачным. Это был великолепный результат, который Минковский ожидал от него с прошлой осени. Сразу же после получения этого результата он сел и написал письмо Гильберту.
«Час назад я получил твою заметку о e и ?... и мне остаётся только выразить тебе моё искреннее и сердечное удивление... Я живо представляю себе оживление Эрмита, вызванное чтением твоей статьи. Насколько я знаю старика, я не удивлюсь, если в ближайшем будущем он сообщит тебе о своей радости, что он всё ещё способен испытывать наслаждение от такой работы».
Наряду с переменами в личной жизни и общественном положении, Гильберт начал проявлять и новый математический интерес. «Отныне я целиком посвящу себя теории чисел», — писал он Минковскому после окончания последней работы об инвариантах. Теперь он занялся этой новой областью.
Хорошо известно, что Гаусс считал теорию чисел вершиной науки. Он отзывался о ней как о «неистощимом источнике интересных истин». Гильберт относился к теории чисел как к «зданию редкой красоты и гармонии». Как и Гаусса, его привлекала «простота её фундаментальных законов, малое количество определений и чистота её истин»; оба они в равной степени были восхищены резким различием между очевидностью формулировок её результатов и «чудовищной» трудностью их доказательства. Однако, одинаково отзываясь о ней, они говорили о двух различных ветвях теории чисел.
Похвалы Гаусса относились к классической теории чисел, восходящей к грекам и имеющей дело с соотношениями между обычными целыми или натуральными числами. Важнейшие из них касались отношений между простыми числами, этими «кирпичиками» числовой системы, и остальными, которые, в отличие от них, кроме 1 и самих себя имеют ещё и другие делители. Ко времени Гаусса понятие натурального числа было значительно расширено. Но Гаусс был первым математиком, выведшим теорию чисел за пределы изучения «поля» рациональных чисел. Числовое поле есть множество чисел, в котором сумма, разность, произведение и (в отличие от целых чисел) частное двух чисел есть некоторое число из этого множества. Гаусс рассматривал числа вида a + bv–1, где a и b — рациональные числа. Множество таких чисел, как и аналогичное множество чисел вида a + bv2, образует числовое поле, поле алгебраических чисел; такие поля являются предметом изучения так называемой алгебраической теории чисел. Именно об этом направлении теории чисел, созданном Гауссом, с похвалой отзывался Гильберт.
Главным препятствием в распространении теории чисел на поля алгебраических чисел являлось то обстоятельство, что в большинстве таких полей не выполняется основная теорема арифметики, которая утверждает, что каждое натуральное число однозначно разлагается в произведение простых чисел. Это препятствие было в некоторой степени преодолено Куммером, который ввёл в рассмотрение «идеальные числа». После Куммера эту теорию разрабатывали два математика, совершенно по-разному подходившие к математике. Ещё до отъезда Гурвица в Цюрих вместе с Гильбертом они посвящали свои ежедневные прогулки обсуждению последних теоретико-числовых работ этих двух математиков. «Один из нас разобрал доказательство Кронекера теоремы о разложении на простые идеалы, другой же разобрал доказательства Дедекинда, — вспоминал позже Гильберт, — и мы нашли отвратительным как одно, так и другое». Занявшись полями алгебраических чисел, он поступил так, как и при решении проблемы Гордана. Вернувшись к самому началу, он обдумал основные идеи теории. Его первой работой в этой новой области было новое доказательство теоремы об однозначном разложении целых алгебраических чисел на простые идеалы.
Едва Гильберт освоился со своим новым положением женатого человека и ассистент-профессора с постоянным жалованьем, как пришли приятные известия. Линдеман получил приглашение из Мюнхена и собирался покинуть Кёнигсберг.
«Само собой разумеется, и, имея хоть каплю справедливости, другого не может думать и Линдеман, что ты должен быть его преемником, — писал Гильберту Минковскнй. — Если ему удастся это пробить, то он по крайней мере с честью покинет своё место, которое он занимал в течение 10 лет».
Разумеется, Гильберт был согласен с этим. Однако окончательное решение в этом деле принадлежало не Линдеману, а Альтхофу. На вакантную должность профессора факультет назвал Гильберта и трёх более солидных математиков, и список был послан в Берлин.