Выбрать главу

Он читал корректуру внимательно и с интересом. В ней Гильберт подчеркнул важность проблем в формировании направлений развития науки, выявил черты великих плодотворных проблем и перечислил требования к их «решению». Затем он сформулировал и обсудил 23 отдельные проблемы, решения которых, по его убеждению, сыграют важную роль в прогрессе математики в наступающем столетии.

Первые шесть проблем относились к основаниям математики, к тому, что, по его мнению, явилось великим достижением только что кончившегося столетия: открытие неевклидовой геометрии и прояснение понятия арифметического континуума, или системы вещественных чисел. В них сильно сказывалось влияние недавней работы по основаниям геометрии и его энтузиазма по поводу возможностей аксиоматического метода. Другие проблемы были более специальны и индивидуальны, частью старые и хорошо известные, частью новые, однако все они затрагивали прошлые, настоящие или будущие интересы Гильберта. Последняя, двадцать третья проблема фактически представляла скорее некоторое предложение на будущее, чем проблему, — призыв к математикам грядущего столетия обращать больше внимания на, по его мнению, несправедливо заброшенный предмет — вариационное исчисление.

С особым энтузиазмом Минковский отнёсся ко второй проблеме из списка Гильберта. В ней впервые встречается утверждение, ставшее известным в математике XX столетия как «проблема непротиворечивости».

Надо помнить, что в работе Гильберта по основаниям геометрии непротиворечивость геометрических аксиом была установлена сведением к утверждению о непротиворечивости арифметики вещественных чисел, которое принималось всеми математиками. Но всё же как обстоит дело с арифметикой? Действительно ли она непротиворечива? Если строить арифметику как аксиоматическую теорию, как это было предложено Гильбертом в недавней работе «О понятии числа», то этот вопрос требовал ответа.

Адвокат может быть удовлетворен тем, что «преобладание улик» свидетельствует «без всякого сомнения», что арифметика в самом деле свободна от противоречий. Однако Гильберт не захотел стать адвокатом. Для него, как математика, непротиворечивость арифметики должна была быть установлена с той степенью определённости, которая непостижима ни в юриспруденции, ни в других сферах человеческой деятельности, отличных от математики. В своей второй проблеме он ставил вопрос о математическом доказательстве непротиворечивости аксиом арифметики вещественных чисел. Для того чтобы подчеркнуть значение этой проблемы, он добавил следующее:

«Если какому-нибудь понятию приписаны противоречащие друг другу признаки, то я скажу, что это понятие математически не существует... В рассматриваемом случае, где речь идет об аксиомах арифметики вещественных чисел, доказательство непротиворечивости этих аксиом равносильно доказательству математического существования понятия полной системы вещественных чисел, или континуума. В самом деле, если удастся полностью доказать непротиворечивость этих аксиом, то все соображения, которые подчас приводились против существования полной системы вещественных чисел, становятся полностью необоснованными».

Наконец-то, чувствовал Гильберт, это даст ответ Кронекеру.

«Чрезвычайно оригинально, — заметил Минковский, — высказывать в качестве проблемы на будущее то, что математика давно считала своим достоянием — арифметические аксиомы. Что скажут на это большое число дилетантов в аудитории? Увеличится ли их уважение к нам? Тебе придется вступить в бой также и с философами!»

В следующие несколько недель Минковский и Гурвиц изучали корректуру лекции Гильберта и давали советы по поводу изложения её на конгрессе. Оба они были озабочены её чрезмерной длиной. Обширное введение к своим проблемам Гильберт заключил волнующим высказыванием, в котором он повторил своё убеждение («разделяемое, несомненно, каждым математиком, но которое никто не подтвердил доказательством»), что каждая конкретная математическая проблема, несомненно, должна быть доступна строгому решению или в форме действительного ответа на поставленный вопрос, или с помощью доказательства невозможности её решения и тем самым неизбежной неудачи всех попыток её решить. Затем он воспользовался случаем, чтобы со всей настойчивостью публично отрицать «Ignoramus et ignorabimus» — мы не знаем и не будем знать — высказывание Эмиля Дюбуа-Реймонда, бывшее популярным в прошедшем столетии:

«Мы слышим внутри себя постоянный призыв: вот проблема, ищи её решение. Ты можешь найти его с помощью чистого мышления, ибо в математике не существует ignorabimus».