При дальнейшем развитии какой-либо области математики человеческий ум, обнадёженный удачами, проявляет уже самостоятельность; он сам ставит новые и плодотворные проблемы, часто без заметного влияния внешнего мира, с помощью только логического сопоставления, обобщения, специализирования, удачного расчленения и группировки понятий и выступает затем сам на первый план как постановщик задач. Так возникли задача о простых числах и другие задачи теории чисел, теория Галуа, теория алгебраических инвариантов, теория абелевых и автоморфных функций и на самом деле почти все тонкие вопросы современной теории чисел и теории функций.
А между тем во время действия созидательной силы чистого мышления внешний мир снова вступает в действие: он навязывает нам своими реальными фактами новые вопросы и открывает нам новые области математики. И в процессе включения этих новых областей знания в царство чистого мышления мы часто находим ответы на старые нерешённые проблемы и таким путём наиболее успешно продвигаем вперёд старые теории. На этой постоянно повторяющейся и сменяющейся игре между мышлением и опытом, мне кажется, и основаны те многочисленные и поражающие аналогии и та кажущаяся предустановленной гармония, которые математик так часто обнаруживает в задачах, методах и понятиях различных областей его науки.
Остается кратко обсудить, какие общие требования могут быть предъявлены к решению математической проблемы. Прежде всего я хотел бы сказать о требованиях, благодаря которым удаётся убедиться в правильности ответа с помощью конечного числа заключений и притом на основании конечного числа предпосылок, которые кладутся в основу каждой проблемы и которые должны быть в каждом случае точно сформулированы. Это требование логической дедукции с помощью конечного числа заключений есть не что иное, как требование строгости в рассуждениях. Действительно, требование строгости, которое в математике уже вошло в поговорку, соответствует общей философской потребности нашего разума; с другой стороны, только выполнение этого требования приводит к выявлению полного значения существа проблемы и её плодотворности. Новая проблема, особенно если она вызвана к жизни явлениями внешнего мира, подобна молодому побегу, который может расти и приносить плоды, только если он будет заботливо и по строгим правилам садоводства взращиваться на старом стволе — твёрдой основе нашей математической науки.
Будет большой ошибкой думать при этом, что строгость в доказательстве есть враг простоты. Наоборот, многочисленные примеры убеждают нас в том, что строгие методы являются в то же время простейшими и наиболее доступными. Именно стремление к строгости и заставляет искать нас простейшие доказательства. Это же стремление часто прокладывает путь к методам, которые оказываются более плодотворными, чем старые, менее строгие методы. Так, теория алгебраических кривых благодаря более строгим теоретико-функциональным методам и последовательному применению трансцендентных методов значительно упростилась и приобрела большую цельность. Далее, доказательство законности применения четырех элементарных арифметических действий к степенным рядам, а также почленного дифференцирования и интегрирования этих рядов и основанное на этом признание полезности степенных рядов, несомненно, способствовало упрощению всего анализа, в особенности теории исключения и теории дифференциальных уравнений, а также доказательству теорем существования в этих теориях. Но особенно разительным примером, иллюстрирующим мою мысль, является вариационное исчисление. Исследование первой и второй вариаций определённого интеграла приводило к крайне сложным вычислениям, а соответствующие приёмы, применяемые старыми математиками, не были достаточно строгими. Вейерштрасс указал нам путь к новому и вполне надёжному обоснованию вариационного исчисления. На примерах простого и двойного интегралов я вкратце намечу в конце моего доклада, как этот путь немедленно даёт поразительное упрощение вариационного исчисления. Именно, для установления необходимых и достаточных критериев максимума и минимума становится излишним вычисление второй вариации и даже частично отпадает необходимость в утомительных рассуждениях, связанных с первой вариацией. Я уже не говорю о тех преимуществах, которые возникают оттого, что исчезает потребность в рассмотрении тех вариаций, для которых значения производных функций меняются лишь незначительно.