Выбрать главу

Предъявляя к полному решению проблемы требование строгости в доказательстве, я хотел бы, с другой стороны, опровергнуть мнение о том, что совершенно строгие рассуждения применимы только к понятиям анализа или даже лишь одной арифметики. Такое мнение, поддерживаемое иногда и выдающимися математиками, я считаю совершенно ложным. Такое одностороннее толкование требования строгости быстро приводит к игнорированию всех понятий, возникших из геометрии, механики, физики, приостанавливает приток нового материала из внешнего мира и в конце концов приводит даже к отбрасыванию понятий континуума и иррационального числа. А сколь жизненно важный нерв был бы отрезан от математики, если бы из неё пришлось изъять геометрию и математическую физику! Наоборот, я считаю, что всякий раз, когда математические понятия зарождаются из теории познания, или в геометрии, или в естественнонаучных теориях, перед математикой возникает задача исследовать принципы, лежащие в основе этих понятий, и так обосновать эти понятия с помощью полной и простой системы аксиом, чтобы строгость новых понятий и их применимость к дедукции ни в какой мере не уступали старым арифметическим понятиям.

Новые понятия с необходимостью влекут и новые обозначения. Мы выбираем их таким образом, чтобы они напоминали те явления, которые послужили поводом для образования этих понятий. Так, геометрические фигуры являются образами для напоминания пространственных представлений и в качестве таковых используются всеми математиками. Кто не связывает с двумя неравенствами a > b > c картинку трёх следующих друг за другом точек на прямой, которые геометрически выражают понятие «между»? Кто не пользуется образом вложенных друг в друга отрезков и прямоугольников, если нужно провести полное и строгое доказательство трудной теоремы о непрерывности функции или существования предельной точки? Кто может обойтись без фигуры треугольника, окружности с заданным центром или без тройки взаимно перпендикулярных осей? Или кто мог бы отказаться от образа векторного поля или картины семейства кривых или поверхностей с их огибающей — понятий, играющих столь важную роль в дифференциальной геометрии, в теории дифференциальных уравнений, в основах вариационного исчисления и в других чисто математических областях знаний?

Арифметические знаки — это записанные фигуры, а геометрические фигуры — это нарисованные формулы; никакой математик не мог бы обойтись без этих нарисованных формул, так же как и не мог бы отказаться при счёте от заключения в скобки или их раскрытия или применения других аналитических знаков.

Применение геометрических символов в качестве строгого средства доказательства предполагает точное знание и полное владение теми аксиомами, которые лежат в основе теории этих фигур, и поэтому для того, чтобы эти геометрические фигуры можно было включить в общую сокровищницу математических символов, необходимо строгое аксиоматическое исследование их понятийного содержания. Точно так же как при сложении двух чисел нужно подписывать цифры слагаемых в строгом порядке друг под другом, если мы хотим воспользоваться правилами вычислений, т.е. аксиомами арифметики, которые определяют правильные действия с цифрами, так и операции над геометрическими образами определяются теми аксиомами, которые лежат в основе геометрических понятий и связей между ними.

Сходство между геометрическим и арифметическим мышлением проявляется также в том, что в арифметических исследованиях мы так же мало, как и при геометрических рассмотрениях, прослеживаем до конца цепь логических рассуждений, вплоть до аксиом. Напротив, особенно при первом подходе к проблеме, мы и в арифметике, как и в геометрии, сначала пользуемся некоторым мимолётным, бессознательным, не вполне отчётливым комбинированием, опирающимся на доверие к некоторому арифметическому чутью, к действенности арифметических знаков, без чего мы не могли бы продвигаться в арифметике, точно так же как мы не можем продвигаться в геометрии, не опираясь на геометрическое воображение. В качестве примера арифметической теории, оперирующей строгим образом с геометрическими понятиями и знаками, может служить работа Минковского Геометрия чисел.