Начиная с Фредгольма, математики всего мира, а особенно в Германии и Соединённых Штатах, вели исследования в области интегральных уравнений.
Однако настоящее безусловно принадлежало Гильберту.
Жизнь в Гёттингене продолжалась.
Примечания
1.
Тайный советник (нем.).
2.
Дудочник в пестром костюме — персонаж поэмы английского поэта Р. Браунинга (1812–1889) «Дудочник в пёстром костюме из Гамельна» («Pied Piper of Hamelin»), включённой в сборник «Драматические истории», опубликованный в 1845 году.
Поэма основана на старой легенде. Город Гамельн в Брауншвейге переполнен крысами, а городское правление не знает, как от них избавиться. Дудочник в пёстром костюме предлагает очистить город от крыс, за что ему обещано уплатить тысячу гиней. Он ходит по улицам города и играет на своей дудке, на зов которой собираются все крысы и следуют за ним. Собрав всех крыс, он ведёт их к реке, где они все тонут. Когда Дудочник требует у мэра вознаграждение, он получает отказ. После этого он снова идёт но улицам города, играя на дудочке, на зов которой собираются все дети города. Ведя их за собой, он приходит к горе Кёппенберг, где перед ними открывается пещера. Дети входят за ним в пещеру, и двери её быстро захлопываются. Аналогичная легенда используется также и в немецкой литературе, герой этой легенды — Крысолов.
3.
Ныне г. Вроцлав в Польше.
4.
Мелодия вальса (нем.).
5.
Да (нем.).
6.
Здесь: основное занятие (фр.).
7.
Господа (нем.).
8.
Обработка лекций (нем.).
9.
Совершенно заслуженно (лат.).
XVI ФИЗИКА
Осенью 1910 года Венгерская Академия наук объявила о присуждении второй премии Бояи «Давиду Гильберту, который глубиной мыслей, оригинальностью методов и строгой логикой доказательств уже оказал значительное влияние на прогресс математических наук».
Именно Пуанкаре, как секретарю комитета по премии, пришлось подготовить общий обзор работ Гильберта для представления Академии и дальнейшего опубликования.
Качествами, о которых он счёл нужным специально упомянуть, были разнообразие интересов, важность решаемых проблем, элегантность и простота методов, ясность изложения и забота об абсолютной строгости. Он высоко оценил удобочитаемость работ Гильберта. Кроме того, он отметил, что влияние работ Гильберта на прогресс математики не ограничивается лишь его личными исследованиями, но также обязано его педагогической деятельности, «помощь, которую он оказывает своим студентам, позволяет им в свою очередь использовать созданные их учителем методы и вносить вклад в нашу науку».
Подробно описав достижения Гильберта (в основном остановившись на его работе по основаниям геометрии), он попытался найти для них место среди достижений других математиков.
О доказательстве теоремы Гордана: «Невозможно лучше оценить прогресс, достигнутый господином Гильбертом, чем сравнить количество страниц, потраченных Горданом на своё доказательство, с теми строчками, в которые уложилось доказательство господина Гильберта».
О новом доказательстве трансцендентности чисел е и ?: «Способность упростить то, что на первый взгляд кажется очень сложным, является одной из характерных черт таланта господина Гильберта».
О работе по полям алгебраических чисел: «Введение идеалов Куммером и Дедекиндом принесло значительный прогресс: оно позволило обобщить и в то же время прояснить классические результаты Гаусса по квадратичным формам и их композициям. Работы господина Гильберта... представляют собой новый шаг вперёд, не менее важный, чем первый».
Об исследованиях по основаниям геометрии: «В истории геометрических идей можно выделить три эпохи: в первую учёным, среди которых мы можем прежде всего отметить Я. Бояи, удалось развить неевклидову геометрию; во вторую Гельмгольц и Ли открыли роль идеи движения и группы в геометрии; третья была начата работами господина Гильберта». Об обосновании принципа Дирихле: «Нет нужды подчёркивать важность открытий, вытекающих из этой специальной проблемы Дирихле, [и] мы не должны удивляться числу исследователей, находящихся сейчас на пути, указанном господином Гильбертом».
О доказательстве теоремы Варинга: «Мы не сомневаемся, что эти рассуждения... будучи полностью осознаны, найдут приложения к значительно более общим задачам, чем проблема Варинга».