Выбрать главу

Две первые из упомянутых Гильбертом проблем не решены до сих пор. [Популярный рассказ о том, как была доказана теорема Ферма, можно найти в книге Саймона Сингха «Великая теорема Ферма» — E.G.A.] Однако десять лет спустя один молодой русский математик по фамилии Гельфонд установил трансцендентность числа 2v(–2). Основываясь на его работе, К. Л. Зигель вскоре доказал требуемую трансцендентность числа 2v2.

Зигель написал Гильберту об этом доказательстве. Он напомнил ему слова, сказанные на лекции в 1920 году, и подчеркнул, что важнейшим моментом здесь была работа Гельфонда. Гильберта часто критиковали за то, что «он ведёт себя так, как будто всё сделано в Гёттингене». Теперь он с крайним восторгом ответил на письмо Зигеля, даже не упомянув о достижении молодого русского математика. Он хотел опубликовать только решение Зигеля. Но тот отказался, уверенный, что Гельфонд сам, в конце концов, решит и эту проблему тоже. Гильберт сразу потерял всякий интерес к этому делу.

После семестра, проведённого в Гамбурге с Гекке, который был там профессором, Зигель вернулся в Гёттинген в качестве ассистента Куранта и позже стал приват-доцентом. Получаемый им заработок был столь малым, что Курант, чтобы иметь себе компаньона в велосипедных прогулках, должен был устроить ему дополнительную стипендию, на которую тот смог купить себе велосипед.

Куранту доставляло удовольствие знакомить Клейна и Гильберта с одарёнными молодыми людьми. Именно благодаря ему Зигель впервые вошёл в личный контакт со знаменитыми математиками Гёттингена. Из-за послевоенной нехватки жилья он некоторое время жил в доме Клейна. Но даже живя с ним под одной крышей, он чувствовал дистанцию, обычную для каждого, кто общался с Клейном. Он постоянно боялся, что «скажет что-нибудь не то». Позже он был приглашён Курантом поплавать в той части реки Лейне, которая была отгорожена для факультета. Он встретил Гильберта в маленьком сарайчике, в котором профессора переодевались в купальные костюмы. Курант представил его Гильберту, объяснив, что молодой Зигель недавно нашёл новое доказательство одной теоремы Гекке, связанной с гипотезой Римана. Гильберт встретил это с большим энтузиазмом. «Ему всегда нравилось внушать молодым людям, что они далеко пойдут». В купальне Зигель не чувствовал с Гильбертом того стеснения, которое он испытывал в доме Клейна.

Вскоре после этой встречи с Гильбертом Курант попросил Зигеля прорецензировать одну работу для Annalen, одним из главных редакторов которого всё ещё был Гильберт. Молодой человек нашёл работу неточной во многих местах, и даже там, где было всё верно, её методы были слишком сложными. Он доложил Гильберту, что, по его мнению, работа не годилась к публикации.

«Нет, нет, я должен её опубликовать! — настаивал Гильберт. — В 1910 году этот человек был членом комитета, присудившего мне премию Бояи, и теперь я просто не могу отказаться опубликовать его работу! Возьмите её и исправьте всё, что должно быть исправлено. Но я должен её опубликовать!»

Работа появилась в исправленном варианте в Annalen. Спустя несколько месяцев, когда Зигель считал, что Гильберт забыл об этом деле, в его комнаты была доставлена посылка. В ней он нашёл два тома собрания трудов Минковского с надписью: «С дружескими мыслями от издателя».

Один из самых продуктивных математических кругов и послевоенном Гёттингене концентрировался вокруг Эмми Нётер. Должность приват-доцента, которой она добивалась, была наконец получена в 1919 году. Это была всё ещё самая низкая ступенька в университетской карьере, не должность, а просто привилегия. Однако Эмми Нётер была в восторге от этого назначения. За тринадцать лет, прошедшие с тех пор, как она держала свой докторский экзамен перед Горданом, она прошла большой путь. Уже были получены важные результаты о дифференциальных инвариантах, которые, по мнению советского математика Павла Александрова, были достаточны, чтобы составить ей репутацию первоклассного математика, и представляли собой «едва ли меньший вклад в математическую науку, чем знаменитые исследования Ковалевской». Сама же она всегда считала эти работы стоящими в стороне от её главного научного пути — построения аксиоматической основы самой общей теория идеалов. Истоками этой последней работы послужили ранние алгебраические труды Гильберта, однако в руках Нётер аксиоматический метод перестал быть «лишь методом логического прояснения и углубления оснований [чем он был для Гильберта], а стал мощным орудием конкретных математических исследований». Портрет Гордана всё ещё висел над её столом в Гёттингене, но, хотя в годы своей молодости она и находилась под столь сильным его влиянием, что в конце своей диссертации привела список полной системы инвариантов для заданной тернарной квартики, содержащий более трехсот форм в символической записи (работа юности, о которой она позже отзывалась как о Formelgestrupp! — джунглях формул), в следующее десятилетие ей было предназначено сделать «теологию» Гильберта похожей на математику.