Выбрать главу

Бесконечна последовательность бесконечно умаляющихся членов ряда, а имеет конечный предел. Конечна траектория стрелы, а ее можно разбить на бесконечное количество сколь угодно малых интервалов. Более того: даже суммирование бесконечно длинной фигуры («треуголки Гаусса») может дать конечную площадь!

А в химии?

Доктрина целочисленных соотношений издавна провозглашена древним пробирным искусством. Она гармонирует с представлениями о дискретности (прерывности) материи — вспомните арифметику в опыте Авогадро! И неспроста: ведь слово «атом» в буквальном переводе значит «неделимый».

Частицы и прерывность… Совместимы ли с этими понятиями методы высшей математики, пронизанные идеей непрерывности при самых малых изменениях в состоянии системы?

История этого вопроса тоже затронута в книге.

Математика без чисел вообще — мыслимо ли такое? Вполне. Примером служит необычная геометрия — топология. А приходилось ли вам слышать о топологической химии?

Кибернетика. Когда произносишь это слово, меньше всего думаешь о химических реакциях. Между тем пламя свечи — самая обыкновенная кибернетическая система. И она строго описывается в терминах науки об управлении и связи. К ней приложимы и математические формулы. Как говорится, дважды два — стеариновая свечка…

Мы начали с опыта Авогадро, который продемонстрировал своеобразие химической «арифметики». Да, в химии не всегда результат сложения оказывается равным сумме слагаемых. И не только в реакциях. В химических соединениях тоже. В последнем случае говорят о неаддитивности свойств. Не будь химическим системам присуща подобная особенность, не было бы того, что мы называем человеческим разумом.

— Ну хорошо, — произнесет читатель, терпеливо добравшийся до этого места. — Конечно, все сказанное не лишено определенного интереса. Но химия служит человечеству с незапамятных времен, вовсе и не претендуя на какую-то там математизацию. Имеет ли применение математики в химии практическое значение?

Действительно, имеет или нет?

Глава 1

Наследие призрака?

Они были ничуть не похожи, эти двое. Один — его звали Гаспар — был жгучим брюнетом и носил парик с длинной косой. Другой, Клод-Луи, предпочитал ходить без парика, подставив ветру свои белокурые развевающиеся волосы. Еще больше различались их профессии: первый был математиком, второй — химиком. Но их имена всегда звучали рядом: ученые хорошо знали друг друга и раньше, а сейчас, когда оба они волею судьбы оказались участниками знаменитой египетской кампании Наполеона, их окончательно связала крепкая дружба.

Третий явился нежданно-негаданно. «Монж-Бертолле» — так окрестила его людская молва. Он был жгучим брюнетом и носил парик с длинной косой, твердили одни. О нет, напротив, он предпочитал ходить без парика, подставив ветру свои белокурые развевающиеся волосы, возражали другие. Солдатским пари конца не было видно. Но вдруг выяснилось, что речь шла о… призраке! Монж-Бертолле не существовал вовсе — точнее, не был единым лицом. Да, речь шла о двух разных людях: ведь имена их были неотделимы друг от друга, хотя сами они, по-видимому, попадались на глаза солдатам порознь. Так по чистому недоразумению были слиты воедино геометр Гаспар Монж и химик Клод-Луи Бертолле, ведавшие научной стороной военной экспедиции Наполеона в страну фараонов.

Трудно сказать, чего больше в этом эпизоде: курьезной занимательности или глубокого символического смысла. Тесная дружба химика-блондина и математика-брюнета была отнюдь не только проявлением пылкого французского темперамента. Она стала знамением целой эпохи, когда началось первое робкое сближение и плодотворное взаимообогащение наук, являющих на первый взгляд не меньший контраст, чем брюнет и блондин, черное и белое.

Принято считать, что чернота и белизна вкупе всегда дают серость. Далеко не всегда! Надо только уметь присмотреться. Перелистайте еще раз доброго старого Перельмана, этого волшебника, заронившего не в одну ребячью душу искру интереса к сухой и чопорной с виду, но удивительно щедрой к своим избранникам старушке математике. Там черным по белому значится (и в этом убедит вас незатейливый оптический эксперимент), что именно наложение черного цвета на белый создает иллюзию блеска!.

Иллюзию? Так, может статься, дружба химии и математики тоже построена на иллюзиях и столь же бесплодна, как и военная авантюра генерала Бонапарта в стране фараонов? Давайте присмотримся повнимательней.