Выбрать главу

Конечно, разным электронам требуется и разная энергия. Если они движутся во внутренних частях атома, для их возбуждения нужны тысячи и даже миллионы килокалорий. Такой энергией обладают рентгеновы лучи.

А их почти нет в составе солнечного спектра. Менее мощны фотоны ультрафиолетовой радиации. Они могут дать сотню-другую килокалорий на грамм-молекулу вещества. Конечно, этого недостаточно, чтобы расшатать устойчивую электронную конфигурацию внутренних оболочек молекулы. Зато наружные электроны весьма чувствительны к облучению ультрафиолетом.

Ощутив толчок, электрон возбуждается и перепрыгивает на более высокую оболочку-орбиту. Он может через некоторое время возвратиться, высветив то же количество энергии, которое получил. Такие прыжки туда и обратно происходят все время, пока мы освещаем какое-нибудь вещество. Именно поглощение света является причиной окраски химического соединения. Если вещество бесцветно, значит оно испускает не воспринимаемый глазом ультрафиолетовый или инфракрасный свет.

Каждый электрон способен поглощать и испускать энергию лишь строго отмеренными дозами — квантами. Чем ближе к этому определенному значению энергия фотонов, тем сильнее возбуждается электрон. Если энергия фотона меньше, чем нужно для возбуждения электрона, активации не произойдет. Если же фотоны слишком энергичны, они тоже действуют слабо. Фотон не может расходоваться по частям. Это же квант — неделимая порция энергии! А электрон не способен принять больше энергии, чем требуется для активации. Ведь ему отведены вполне определенные уровни-слои в электронных оболочках. Значит, пальба из пушек по воробьям в микромире столь же неэффективна, как из рогатки по слонам. Наибольшее действие оказывают лишь те фотоны, калибр которых в точности соответствует масштабам мишени.

Другое сравнение, если угодно: электрон заряжается, как пистолет. И подходят для этой цели пули только одного калибра.

Электрон начинает колебаться, перескакивая вверх и вниз с орбиты на орбиту, в такт с ударами фотонов. В беспокойной обстановке такого «артобстрела» спаренным электронам трудно удержаться вместе, сохранив антипараллельность спинов. Но как только спины окажутся одинаковыми, электроны-магнитики тут же начнут отталкиваться друг от друга. И хотя энергия самого отталкивания не так уж велика, в электронном облаке, окружающем атомные ядра в молекуле, происходят глубокие изменения. Молекула разваливается на куски.

Этому помогают и колебания атомных ядер. Они то сжимают, то растягивают пружину химической связи. И тем сильнее, чем интенсивней инфракрасное излучение, чем выше температура. Электронное облако молекулы пульсирует в такт с колебаниями ядер. Наконец в многоатомной молекуле взаимодействуют между собой и «пружины» соседних валентных связей.

Ультрафиолетовое излучение Солнца наиболее опасно для связей O—H в молекуле H2O. До поверхности Земли оно почти не доходит, поглощаясь атмосферой. Здесь вода чувствует себя спокойно (если, конечно, ее молекулы не подвергаются сильному нагреванию). Зато на больших высотах она не выносит обстрела и разрушается.

Итак, началом конца валентной связи оказывается расторжение союза между двумя электронами-магнитиками. Обретая параллельные спины, электроны отчуждаются. Но за этой враждой стоят куда более могущественные силы. Прежде всего — электростатическое отталкивание ядер. И самих электронов (ведь они тоже одноименные заряды!). Наконец, увеличение кинетической энергии электронов при перескоке на более высокую орбиту. Когда все это вместе взятое превысит силы внутримолекулярного сцепления, разрыв валентной связи неминуем.

Что же противостоит в молекуле силам, подрывающим ее изнутри?

Не притяжение электронов-магнитиков — мы это давно уже установили. Быть может, кулоновское взаимодействие между электронами и ядрами разных атомов? Но почему тогда так необходима антипараллельность электронных спинов, чтобы связать атомы валентными узами? Ведь тяготение электронов-магнитиков прямо-таки мизерно! Во всяком случае, ни в какое сравнение не идет с их электростатическим отталкиванием.

Атом — равновесная система. Молекула тоже. Мы выяснили, что разрушение внутримолекулярной связи требует затраты энергии. Стало быть, ее образование должно сопровождаться высвобождением того же количества энергии. И действительно: энергетическое состояние молекулы выгоднее, чем у двух разрозненных атомов. Но чтобы сблизившиеся атомы могли прореагировать, перейти из одного равновесного состояния в другое, их надо слегка подтолкнуть.