Выбрать главу

Итак, у любых кристаллических материалов электропроводность зависит от высоты «запретной зоны». А у длинных и гибких полимерных нитей?

Молекула полимера с сопряженными связями напоминает ряд атомов в кристалле. Роль узлов кристаллической решетки выполняют атомы углерода. И так же, как в кристалле, здесь соблюдается принцип Паули — несовместимость одинаковых квантовых состояний у электронов соседних связей. Тут-то и начинается различие в проводимости.

Пусть в молекуле n сопряженных связей. Тогда, очевидно, у нее будет 2n пи-электронов. Сигма-электроны не в счет: они не влияют на электропроводность полимера. Если длины ординарной и двойной связей одинаковы, то пи-электрон любого атома C пользуется неограниченными правами вольноотпущенника. С равной вероятностью он может пребывать справа и слева от своего «хозяина». Стало быть, мы можем разбить мысленно молекулярную цепочку на такие звенья:

Если ординарные и двойные связи неравноценны, пи-электроны менее свободны. Они стараются держаться друг возле друга, парами. И местонахождение обоих спаренных пи-электронов наиболее вероятно в районе, который мы отмечаем двумя штрихами. Здесь уже нам придется выделить иное звено цепочки: —С = С—.

Количество звеньев первого рода 2n, второго — n. В каждом звене квантовые состояния должны отличаться от соседних. Но расщепление уровней происходит неодинаково. В молекуле с равноценными сопряженными связями электронам отводится 2n ступенек, с неодинаковыми — n. Электронов же в обоих случаях поровну — 2n, то есть n пар. Каждой паре — по ступеньке. Значит, в молекулах обоих типов электроны могут запросто уместиться на п ступеньках.

Однако в молекуле типа

у них в запасе еще п «вакантных» ступенек! Вспрыгивая на них, электроны придают молекуле свойства проводника. А в молекуле типа —С = С—С = С— все «разрешенные» ступеньки заполнены до отказа. Выше — «запретная зона». Чтобы подсобить электронам ее преодолеть, попасть в зону проводимости, требуется обстрелять молекулу квантами энергии. Перед нами — явный полупроводник.

Разумеется, вовсе не обязательно, чтобы молекула была линейной. Еще в начале столетия обнаружилось, что у молекул антрацена под действием света увеличивается проводимость. Открытию не придали особого значения. И лишь в течение последних десяти — пятнадцати лет развернулись систематические исследования циклических углеводородов с сопряженными связями. Причем самых различных. И не только таких, у которых скелеты составлены из одних углеродных атомов, как, например, у коронена. Его название созвучно со словом «корона». Действительно, структура его своей угловатой симметрией напоминает царский венец. Или кусочек паркета, составленный из семи шестиугольных плиток.

В 1959–1960 годах ряд виртуозно проведенных синтезов дал в руки охотников за полупроводниками еще более необычные молекулы: C18H18, C24H24, C30H30. Они напоминают корону, разве что без внутреннего обода. Это как бы свернутая в кольцо полимерная цепочка с сопряженными связями. Причем остовы этих удивительных конструкций смонтированы сплошь из углеродных атомов.

А вот фталоцианин содержит наряду с углеродными также и атомы азота. Да еще не в шестичленных, а в пятичленных циклах. Атомы азота не просто занимают место в каркасе этих архитектурных сооружений микромира. Их присутствие благоприятно сказывается на проводимости. Доноры, готовые пожертвовать своей неподеленной парой электронов, они вносят дополнительный вклад в электропроводность молекулы.

Немало интересных результатов при изучении фталоцианина получено недавно советским ученым Вартаняном. Выявление особенностей, присущих молекулярным постройкам с сопряженными связями, дает возможность предвидеть, даже заранее программировать, свойства соединений, которые рождаются в лабораторных колбах.