Масштабы разные — эффект один.
При комнатной температуре гремучая смесь — в маленьком ли баллончике, в громадном ли резервуаре — сохраняет спокойствие. Даже при нагревании до 300 градусов скорость реакции неизмеримо мала. Однако при переходе за черту в 600 градусов (температура тлеющего уголька) взаимодействие протекает мгновенно. Смесь взрывается.
Описанные примеры помогут нам сделать кое-какие выводы. Если условия одинаковы, то скорость процесса почти не зависит от его масштабов. И еще: на скорость химического процесса сильно влияет тепло. Опытным путем установлено приближенное правило: нагревание на 10 градусов ускоряет ход реакции в два-четыре раза. Так что если у вас повышенная температура, лекарства будут помогать вам скорее.
Однако непонятно другое. Стоит внести в огромный объем горючей смеси даже тлеющий окурок, как из искры возгорится пламя. Почему? Каким образом маленькая спичка вызывает большой пожар? У крохотного факела температура 600–800 градусов. Но все равно этого далеко не достаточно, чтобы прогреть насквозь внутренности цеппелина или обыкновенного полена до температуры реакции. А языки пламени ненасытны, их не уймешь, пока они не слижут дотла остатки своей добычи. И это еще не все вопросы.
Возьмите кусочек рафинада и попробуйте поджечь его. Сахар оплавится, обуглится, но не воспламенится. А теперь посыпьте его золой из пепельницы. И вторично поднесите зажженную спичку. Сахар вспыхнет ровным голубоватым пламенем. Что случилось?
Зола сама по себе негорюча. Ведь это же минеральные соли! Если провести химический анализ, то в остатке от преданного огню кусочка рафинада вы обнаружите то же количество золы, взятой из пепельницы, что и до опыта. Очевидно, зола сыграла роль катализатора. Выходит, не только от тепла зависит скорость реакции!
И все же сахар можно поджечь спичкой без катализатора.
Те, кому довелось бывать на сахарных заводах, помнят, должно быть, таблички «Не курить!» даже там, где нет и в помине чего-нибудь легковоспламеняющегося. Оказывается, остерегаться следует… сахара. Правда, не кускового. Опасным врагом он становится лишь в виде пылинок, витающих в воздухе.
Обмерьте кусочек пиленого сахара. Общая площадь его граней невелика — в лучшем случае, с большую почтовую марку. Но разотрите кусочек в тонкую пудру — и суммарная поверхность частиц может достигнуть размеров футбольного поля. Между тем количество вещества осталось прежним! Если распылить порошок в воздухе, крупинки хорошо перемешаются с окислителем (кислородом). И сахар, который в компактной массе загорается с таким трудом, внезапно обретает силу динамита.
А посмотрите-ка на формулу горения сахара: С6Н12O6 + 6O2 = 6CO2 + 6H2O. Она скромно умалчивает о химических перипетиях, в которых могут участвовать молекулы сахара. Ибо уравнение реакции отражает лишь перераспределение химических связей между атомами. А нас интересует сейчас, как протекает химический процесс от начала до конца.
Для этого нам придется заглянуть в самые потайные механизмы, прячущиеся за кулисами химических уравнений.
Химическая реакция — ее тонкости не так-то просто постигнуть!
Мы уже знаем, как молекула рождается и как она умирает. Но образование или разрушение валентной связи — лишь итог химической реакции. Причем в реальных системах приходится иметь дело с огромными скоплениями молекул, где беспокойные члены коллектива оказывают друг на друга заметное влияние. Например, когда мы пишем: 2H2 + O2 = 2H2O, то вовсе не имеем в виду, что две молекулы водорода прореагировали с одной молекулой кислорода и дали две молекулы воды. За каждым символом подразумевается колоссальное скопище частиц одного сорта. Уравнение же отражает лишь соотношение между частицами разных сортов, участвующих в реакции. А коли так, то естественно допустить, что изменение количества молекул придаст системе в целом какие-то новые качества.
Так оно и есть на самом деле.
Без следов воды не идет реакция 2H2 + O2 = 2H2O. Вода, которая гасит огонь, оказывает здесь каталитическое действие. Но та же реакция протекает по-разному в зависимости от того, насколько хорошо перемешаны водород и кислород.