Выбрать главу

Another possibility is that there is a slight asymmetry in the production scheme for matter and antimatter. This scheme might slightly favor the production of normal matter. Experimental evidence for such an asymmetry is sparse. One reason for the development and construction of the Large Hadron Collider at the CERN is to search for such asymmetries. But even this enormous and energetic proton accelerator may not have sufficient energy to duplicate conditions in the very early universe.

The Antimatter-Matter Interaction

It was originally believed that the interaction of a particle and its antiparticle twin would instantaneously result in gamma ray photons. This would not be great for space travel since gamma rays are not easy to deflect. But nature is actually a bit kinder to us in this respect. Yes, gamma rays are the end product. But along the way, many of the intermediate, short-lived particles are electrically charged.

Early antimatter rocket pioneers had no idea regarding the charged-particle decay scheme for matter-antimatter annihilation products. In the early 1950s, the German rocket scientist Eugen Sanger proposed that a spacecraft propelled by the matter-antimatter reaction would be a photon rocket emitting gamma rays. But focusing these gamma rays so that they emerged as an exhaust seemed to be a nearly insurmountable problem. Sanger’s thought experiments centered upon an electron gas that might reflect the gamma rays. But he was never able to solve the problem.

It was a flamboyant and dynamic American physicist and science fiction author, Robert Forward, who brought the charged-particle decay scheme of the proton-antiproton annihilation reaction to the attention of the space propulsion community. An imposing figure, Forward was famous for his colorful vests. Legend has it that he never wore any of his vests more than once!

In 1983, Forward conducted a research effort on alternative propulsion techniques. This was published in a December 1983 report for the United States Air Force Rocket Propulsion Laboratory. According to this report, the immediate products of proton-antiproton annihilation are between three and seven electrically neutral and charged pions. (A pion is one of the many subatomic particles found to comprise the matter around us.)

A magnetic nozzle can be used to focus these electrically charged particles and expel them out the rear of a matter/antimatter rocket as exhaust. A large fraction of the energy produced in the proton/antiproton annihilation is transferred to the kinetic energy of this charged particle exhaust. Although an operational matter/antimatter annihilation rocket will not have the one hundred percent efficiency of Sanger’s photon rocket (probably thirty to fifty percent according to Forward), it will be much more effective than a fission or fusion rocket. And charged particles, even short-lived charged particles, are much easier to handle than gamma rays.

Antimatter Factories

To date, no repositories of antiprotons or anti-hydrogen have been found. But antimatter is routinely produced in nature and also by humans. In this section, we deal with various types of antimatter factories.

First, let’s consider nature’s factories. Then, we will look at antimatter production in our largest existing nuclear accelerators. Finally, we treat antimatter production facilities that might be constructed by a future solar-system wide civilization.

Natural Antimatter Factories

It has been suggested that one source of antiparticles in nature is black holes. The process would work as follows. Protons have a higher mobility than electrons. In the case of a black hole immersed in a tenuous neutral plasma composed of electrons and protons, more protons than electrons might tend to disappear into the event horizon of a cosmic black hole. This would produce a positive charge on the black hole and a large electric field. If the field becomes enormous, a vacuum instability could be produced. This vacuum instability might result in the production of matter/antimatter pairs. It is conceivable that in the early universe, the preferential gathering of protons into black holes and the resulting positive charge on these singularities might have resulted in more negatively-charged antiprotons being absorbed by them than positively-charged protons (since opposite charges attract). But what then happened to the surplus positrons?

Another way that matter/antimatter pairs can theoretically be produced by black holes is Hawking Radiation, named after the world-famous British theoretical physicist. Black holes of all sizes may have been created in an early stage of the universe. As black holes age, they ultimately evaporate with the less massive ones suffering this fate sooner that their more massive compatriots. Primordial black holes of asteroid-planet mass are theoretically evaporating during the current universal epoch. As a black hole evaporates, much of its contained energy is radiated away. Some of this radiation should be converted to matter/antimatter pairs.

Closer to home, it has been noted that even stable, main-sequence stars like our Sun may be antimatter factories. In 2002, satellite observations of solar flares indicated that a large flare may release as much as half a kilogram of antimatter. Apparently, solar flares in some unknown manner sort particles by mass so that many of the antiparticles unexpectedly survive their passage through dense solar layers.

Even closer to home and more surprising are satellite observations of terrestrial lightning discharges. In 2009, it was reported that during its first fourteen months of operation, the NASA Fermi Gamma Ray Space Telescope had detected gamma ray bursts associated with seventeen lightning discharges. The positrons were detected in two of these.

The Best Existing Human-Constructed Antimatter Factories

Our most energetic particle accelerators can accelerate sub-atomic electrically charged particles to nearly the speed of light. When these energetic particle beams impact a target, some of the beam energy is converted to particle/antiparticle pairs.

When Robert Forward wrote his US Air Force report on advanced propulsion in 1983, there were three antimatter factories in the world. All were proton accelerators. One was in Russia, another was CERN, and the third was the Tevatron at the Fermi National Accelerator Laboratory near Chicago. None of these machines can be considered “small” by any standard. The Tevatron, for example, has a four mile circumference and is equipped with more than one thousand superconducting magnets operating at temperatures close to absolute zero.

Accelerated protons in the Tevatron circle the ring almost fifty thousand times per second at a peak velocity of 99.99999954 percent the speed of light in vacuum. To protect the surrounding environment from stray radiation, the Tevatron tunnel is 25 feet below ground.

Operating continuously, the Tevatron could produce and temporarily store, at enormous expense, about 1 nanogram per year of antiprotons. If all three of these devices were to be devoted to antimatter production and operated continuously, we might have a gram of the stuff after one hundred million years. We need to do a bit better for star flight!

Huge and imposing as it is, the Tevatron must be considered obsolete when it is compared to its cousin the Large Hadron Collider (LHC) at CERN. The LHC has a radius of over two and half miles and is equipped with 9,300 magnets for beam bending and focusing.

Within the fully operational LHC, particle beams will circulate 11,245 times each second. There will be up to six hundred million particle collisions per second and the best vacuum in the solar system will be maintained within this device.

One of the primary goals of the LHC is to produce, accumulate and store antiprotons. An AOL news item on November 18, 2010 reported that 38 anti-hydrogen atoms have been produced at the CERN by combining decelerated LHC-produced antiprotons with positrons produced by radioactive decay. (An article describing this experiment, by G. B. Andresen et al., is entitled “Trapped Antihydrogen” and was published November 17, 2010 in Nature online). These anti-atoms were stored for a record 0.2 seconds. Thirty-eight anti-atoms is a long way from what we will need to fuel a starship. And 0.2 seconds is a tiny duration compared with the months or years we will require the fuel to be stored. But it’s a good start!