1.
2.
3.
4.
Отличие от вычисленной нами ранее частоты перехода 105–104 (5769,4 МГц) – 0,03 %, а от частоты физиков (5762,9 МГц) – 0,08 %.
Рассчитаем по нашей методике частоты излучений ещё нескольких переходов.
Переход 301–300.
1.
2.
3.
4.
Переход 101–100.
Миллиметровый диапазон волн.
Эта частота попадает в длинноволновую границу начала терагерцового диапазона волн (0,3–10 ТГц – читается так: 0,3–10 терагерц). Длины волн этого диапазона – от 1 мм до 30 мкм (до 30 микрон).
В заключение рассчитаем параметры ещё одного перехода (если такой существует в каком-то гигантском атоме где-то в космосе).
Переход 10001–10000.
Мы видим, что даже такой супер-гигантский атом, с размерами микрон (если такой где-то существует) человеческий глаз всё равно не увидит.
Теперь выпишем ряд рассчитанных нами частот фотонов:
101–100
301–300
1001–1000
10001–10000
Мы видим, что частота излучаемого атомом фотона имеет квадратичную зависимость относительно номера удалённости перехода от ядра. Это объясняется следующим.
1. Энергия фотона имеет линейную зависимость от частоты:
2. Энергия излучаемого атомом фотона вычисляется как разность полных энергий атомной системы в переходах электрона:
Например, Читается это так: порция энергии полного (двухполупериодного) фотона
состоит из двух порций энергии
единичных атомов. Или, по-другому, читается так: порция энергии
излучаемая единичным атомом в виде фотона с частотой фотона
составляет лишь половину (полуволну) от полной энергии фотона
частота которого равна .
Заметим, что величина
Ещё раз отметим, что обе энергии в принятой физиками «сдвинутой» шкале энергий атомных уровней – отрицательные. Максимальной энергией (нулевой) здесь является энергия очень больших «верхних» орбит, когда электрон на них становится почти оторванным (свободным) от атома. Поэтому, поскольку орбита расположена выше орбиты
то её энергия больше:
потому что по абсолютной величине (по числовому значению) энергия , как энергия более «глубокого» уровня (орбита n = 90 расположена ближе к ядру, чем орбита n = 91, и её потенциальная энергия по абсолютной величине больше потенциальной энергии орбиты n = 91, а полная энергия равна по модулю половине потенциальной).
То есть во всех книгах по квантовой механике теория Бора верно полагает величину (как она пишется в книгах – ) – положительной:
В соответствии с этим, физики верно считают, например, переход переходом атома из его состояния с большей энергией в состояние с меньшей энергией (хотя к конкретике этого перехода у нас к физикам есть вопросы).
3. Зависимость потенциальной энергии от напряжённости поля – линейная:
при том, что
4. Но зависимость напряжённости от радиуса орбиты (от номера орбиты) – квадратичная, так как
Поэтому зависимость частоты излучаемого фотона от номера удалённости перехода получается квадратичной.
В жизни человеческого общества мы наблюдаем множество проявлений несправедливости. Но История, с её гигантским арсеналом все увеличивающейся и увеличивающейся год за годом памяти людей о прошлом, рано или поздно всё расставляет по своим местам. Когда-то значимое событие становится со временем рядовым, а когда-то рядовое становится не только значимым, но иногда и – знаковым. То есть и здесь, в Истории людей, мы словно бы наблюдаем воочию проявления философского закона перехода Количества (фактов) в Качество.
Ничто не может умалить честного достижения профессионалов – экспериментаторов Арно Пензиаса и Роберта Вилсона, обнаруживших в 1964–1965 годах трёхградусный фон космического микроволнового излучения. Пензиас и Вилсон дали своей статье в «Астрофизическом Журнале» скромное название «Измерение избыточной антенной температуры на частоте 4080 МГц» (длина волны 7,35 см). Они просто объявили о том, что измерения эффективной температуры шума дали значение 3,5 К – выше, чем ожидалось. Космологическое же значение опытам Пензиаса и Вилсона дали теоретики: Пиблз, Дикке, Ролл и Уилкинсон.