Хлорсульфоновая го водорода, которые соединяются при слабом нагкислота получается из трехокиси серы и хлористоревании.
SO3 + HCl = ClSO2OH
При промышленном производстве хлористый водород пропускается через 2 % олеума до насыщения. Последний нагревается в кубе с азотной кислотой, при чем хлорсульфоновая кислота перегоняется между 150° и 160 °C. С 30 % олеумом выход достигает 42 %. Остаток в перегонном кубе состоит из серной кислоты крепости приблизительно 98 %.
Хлорсульфоновая кислота есть бесцветная жидкость, кипящая при 152 °C и имеющая плотность в 1,7.
Рис. 86.
75-mm снаряд с желтым фосфором. Через 2 сек. после разрыва.
Она дымит на воздухе вследствие реакции с водой, которая разлагает ее на серную и соляную кислоты.
ClSO2ОН + H2O = Н2SO4 + HCl
Она не употреблялась в Соединенных Штатах, так как олеум по качествам своим был найден более действительным.
Олеум. Олеум есть раствор от 20 до 30 процентов трехокиси серы (SO3) в концентрированной серной кислоте. Он употреблялся немцами при действии на негашенную известь для производства облаков на суше и на море; американцы применяли его для устройства завес перед танками и аэропланами. Для заполнения снарядов серный ангидрид оказался более подходящим материалом, чем хлорсульфоновая кислота. Полагать, что своей способностью производить дым олеум обязан только содержащемуся в нем серному ангидриду, серная же кислота сама по себе играет лишь роль растворителя. Сравнительно высокая температура замерзания олеума, содержащего большой процент серного ангидрида, является его недостатком.
Трехокись серы. Трехокись серы SO3, есть бесцветная подвижная жидкость, кипящая при 46 °C и застывающая в прозрачную, похожую на лед массу, плавящуюся при 15 °C. Она приготовляется пропусканием смеси двуокиси серы и кислорода над мелко раздробленной платиной или другими катализаторами, при температуре между 400° и 450 °C. Трехокись серы может применяться для заполнения снарядов и бомб и, вероятно, является лучшим веществом для замены фосфора.
Четырехлористое олово. Четыреххлористое олово SnCl4 получается при действии хлора на металлическое олово. Оно представляет жидкость, кипящую при 114 °C, имеющую плотность 2,2 и дымящую на воздухе вследствие разложения водой на гидрат окиси олова:
SnCl4 + 4H2O = Sn(OH)4 + НCl
Хлорное олово в снарядах и ручных гранатах дает лучший и более раздражающий дым, чем четыреххлористый кремний или титан. Так как в Америке нет крупных месторождения олова, то для замены его пользовались другими четыреххлористыми соединениями.
Четыреххлористый кремний. Четыреххлористый кремний SiCl4 приготовляется из кремния или из нечистого карбида кремния, путем нагревания с хлором в электрической печи. Исходный материал, карбид кремния, является побочным продуктом при производстве карборунда. Четыреххлористый кремний есть бесцветная жидкость, кипящая приблизительно при 58 °C и дымящая на влажном воздухе, вследствие реакции присоединения воды:
SiСl4 + 4H2О = Si(ОH)4 + 4НСlSi
При применении в снарядах кремний уступает по качествам олову, так как дает лучший эффект в сырые, свежие дни, чем в теплые и сухие. Наибольшее применение он получил в дымовых цилиндрах, в смеси с аммиаком. Под действием влаги воздуха происходит следующая реакция:
SiCl4 + 4NН3 + 4H2О = Si(ОН)4 + 4NH4Сl.
Прибавка лакриматоров дает смесь, применявшуюся с большим успехом в ручных гранатах для удаления неприятеля из окопов.
Четыреххлористый титан. Четыреххлорпстый титан TiCl4 приготовляется из рутила TiO2 смешиванием с 30 % угля и нагреванием в электрической печи. При этом образуется карбонитрид, которому приписывают состав Тi5С4N4, хотя в действительности оп может варьировать от этой формулы вплоть до карбида ТiС. Этот продукт нагревается при пропускании хлора до 600° — 650 °C, при чем образуется тетрахлорид. Четыреххлористый титан есть бесцветная жидкость с весьма высоким коэффициентом преломления, кипящая приблизительно при 136 °C, устойчивая в сухом воздухе и дымящая во влажном. Самый лучший дым получается при употреблении 5 частей воды на одну часть тетрахлоряда, вместо полагающихся по теории четырех частей [которые должны бы давать Ti(OH4)]. Так как производство его значительно дороже, а действие не так сильно, как действие четыреххлористого кремния или олова, то он употреблялся только при недостатке указанных материалов.
Смесь Бергера. Одним из самых важных материалов для производства дымовых завес была цинковая смесь, применявшаяся в дымовой коробке, в дымовой свече, в некоторых дымовых гранатах и в различных видах окрашенных дымов. Основой ее является "смесь Бергера", имеющая следующий состав:
| Цинка | 25% |
| Четыреххлористого углерода | 50% |
| Окиси цинка | 20% |
| Кремнезема (Kieselguhr) | 5% |
Смесь дает светло-серый угольный дым с большим количеством угля в осадке. При этом цинк вступает в реакцию с четыреххлористым углеродом, образуя хлористый цинк и уголь; кремнезем сохраняет смесь в твердом состоянии, поглощая тетрахлорид, в то время как окись цинка практически не имеет значения, так как ее поглотительная способность мала.
Чтобы ускорить реакцию и окислить уголь, к смеси Бергера прибавлялись различные окислители, при чем цвет дыма изменялся из серого в белый. По экономическим соображениям для этой цели был избран хлорноватокислый натр. Но в его присутствии реакция протекает слишком бурно вследствие чего окись цинка была заменена хлористым аммонием. Введение последнего охлаждало дым, задерживало скорость горения и увеличивало плотность дыма, так как затемняющая способность хлористого аммония весьма значительно. Кремнезем был заменен осажденным углекислым магнием, который. представляет собой столь же хороший поглотитель, дает более покойно горящую смесь и увеличивает до известной степени плотность дыма, благодаря механически разбрасываемой окиси магния. Смесь имела следующий состав:
| Цинка | 34,6% |
| Четыреххористого углерода | 40,8% |
| Хлорноватокислого аммония | 9,3% |
| Хлористого натра | 7,0% |
| Углекислого магния | 8,8% |
При производстве дыма размер частицы имеет большее значение. Будучи физической величиной, она легко может быть исследована, пользуясь такими физическими свойствами, как осаждение, диффузия, коагуляция и испарение. Эти факторы получают особо важное значение в ядовитых дымах, так как в них подлежит учету способность к прониканию.