В принятых XXVI съездом КПСС «Oсновных направлениях социального и экономического развития СССР на 1981—1985 годы и на период до 1990 года» предусмотрена «разработка биотехнологических процессов для производства продукции, используемой в медицине, сельском хозяйстве и промышленности». Речь идет о реализации достижений в исследовании физико-химических основ жизнедеятельности, которые завершились созданием новых технологий. Впервые биотехнологические работы включены в Государственный план. В целевых программах расписаны разработчики и исполнители — от научных учреждений до заводов.
Сейчас создается, по существу, новая отрасль промышленности — высокопроизводительная, эффективная, мобильная, требующая высокой культуры производства, но дающая принципиально новый подход к решению задач, которые до этого казались недоступными.
Пример — получение лекарственных препаратов. Традиционное направление в медицине — поиск препарата эмпирическим путем, путем долгим и необычайно трудоемким. Приходится синтезировать и проверять в среднем 10—12 тысяч веществ, чтобы найти один ценный препарат. Идут длительные испытания на животных, затем испытания клинические, прежде чем этот препарат входит в практику.
Другой путь — более эффективный (если он приемлем) — использование природных биорегуляторов, которые содержатся в организме, но в недостаточных количествах. В частности, больные диабетом испытывают недостаток в инсулине, потому что поджелудочная железа перестает вырабатывать нужное количество этого гормона. Сейчас практикуют введение в организм инсулина животного происхождения. Но он отличается от человеческого, и у многих больных уже сегодня возникают аллергические реакции, вплоть до того, что некоторые вообще не переносят животный инсулин; а такая ситуация в общем-то чревата печальным исходом. Перед наукой встала проблема: нужен инсулин человека, но где и как его добывать?
Когда пептидный синтез достиг высокого уровня, решили синтезировать инсулин химически. И принципиально он был синтезирован, но экономически этот путь оказался пока тупиковым. Преградой стала сложность его массового производства: необходимо около 150 стадий синтеза. Были испробованы и другие подходы, но все они натолкнулись на непреодолимые препятствия.
И вот одно из направлений современной биотехнологии родилось на основе генетической инженерии. Наступил определенный этап в изучении нуклеиновых кислот, главных хранителей наследственной информации, когда ученые научились не только прочитывать структуру генетического аппарата — ДНК, но и оперировать эту гигантскую молекулу, разрезая ее на части, смотреть, какие фрагменты отвечают за ту или иную функцию живого организма, выделять или синтезировать их химическим путем. Произошел революционный скачок в науке: оказалось, что можно взять ген одного организма и встроить его в генетический аппарат другого — он там работает! Проще всего сегодня встраивать чужие гены в микроорганизмы — бактерии или дрожжи, для чего лучше использовать сателлитные генетические структуры — плазмиды, которые представляют собой маленькие циклические молекулы ДНК, несущие небольшую часть генетической информации клетки. Делать это можно, используя и другие простейшие системы, такие, скажем, как вирусы, бактериофаги. Вводя туда информацию с помощью нового гена, можно ожидать, что она будет реализована, проявит себя в организме нового хозяина. Полученные таким образом искусственные ДНК назвали рекомбинантными.
Что же сделано сегодня?
Например, ген инсулина был химически синтезирован, затем введен в микробную клетку — кишечную палочку, и заработал... Правда, не сразу. К нему пришлось присоединить еще некоторые элементы ДНК, необходимые для того, чтобы клетка начала реализовывать новый ген. Эти элементы как бы говорят клетке, что ген «свой» и его можно принять и использовать.