5. Подержав плату в воде некоторое время (пара минут), осторожно отдерите бумагу. На фольге останутся чёрные "дорожки" с торчащими лохмотьями бумаги. Пальцами осторожно снимите остатки бумаги. Не повредите дорожки, ничего, если вы не уберёте всю бумагу. Удалите наплывы тонера, если они присутствуют.
6. Кидайте в раствор хлорного железа. Тонер защитит нужные места от травления. После завершения травления сотрите тонер при помощи ацетона. Теперь останется только просверлить отверстия и плата готова!
Всё, впаивайте детали!
МАТЕМАТИЧЕСКИЙ ПРАКТИКУМ
Расчет дополнительных погрешностей каналов ИИС АСУТИ
Кузнецов Б.Ф., Пинхусович Р.Л., Пудалов А.Д.
В настоящее время большинство технологических процессов в химической и нефтехимической промышленности оснащаются автоматическими системами управления (АСУТП), неотъемлемой частью которых являются информационно-измерительные системы (ИИС). Основной особенностью функционирования измерительных каналов ИИС при работе в составе АСУТП является то, что здесь реализуются динамический режим измерений.
Отклонение значений параметров технологических процессов от заданных может привести к значительным экономическим потерям, т. е. снижению эффективности функционирования АСУТП [1]. При этом одним из основных факторов определяющих эффективность работы систем автоматического управления является точность измерения значений параметров технологических процессов, на основе результатов которых вырабатывается управляющее воздействие. В данных условиях, преобладающими являются такие составляющие как динамическая и дополнительные погрешности измерительных преобразователей (ИП), и в совокупности могут составлять до 90 % от суммарной погрешности измерительного канала ИИС.
Появление дополнительных погрешностей обусловлено воздействием на ИП совокупности неконтролируемых факторов, например, температуры окружающей среды, влажности атмосферного воздуха, изменения параметров питающей сети и др..
Существующие в настоящее время методики расчета дополнительных погрешностей позволяют производить вычисления только для случая, когда измерения осуществляются в установившемся режиме, тогда внесение поправок на результат измерений не представляет трудности. Анализ дополнительной погрешности измерительного канала в динамическом режиме требует иного подхода, разработка которого и является целью данной работы.
Модель измеряемого сигнала на входе канала ИИС x(t) может быть представлена в виде суммы математического ожидания измеряемого параметра μx = M{x{t)}, стационарного центрированного случайного процесса гауссовского типа x0(t) и гармонической составляющей xh(t) [2–4]:
x(t) = μx + x0(t) + xh(t). (1)
Модель влияющих величин ε(t) также может быть описана выражением подобным выражению (1), т. е. [2–4]:
ε(t) = με + e0(t) + eh(t), (2)
где με — математическое ожидание влияющей величины; e0(t) — стационарный центрированный случайный процесс гауссовского типа; eh(t) — гармоническая составляющая.
При учете инерционности измерительного канала и канала влияния необходимо также иметь информацию о таких характеристиках сигналов как спектральная плотность мощности (СПМ) или соответствующая ей автокорреляционная функция (АКФ).
В общем случае выходной сигнал измерительного канала y(t) есть некоторый функционал от измерительного сигнала и влияющей величины (или величин) т. е. y(t) = Ψ{x(t),ε(t)}, но при нормировании дополнительной погрешности обычно сводят к одному из следующих видов:
— мультипликативная погрешность;
— аддитивная погрешность;
— аддитивно-мультипликативная погрешность (при нескольких влияющих величинах).
В зависимости от количества влияющих величин и их взаимной зависимости, а так же зависимости между ними и измеряемой величиной могут быть выделены следующие модели погрешности измерительного канала:
— скалярная модель с независимыми сигналами (одна влияющая величина ε{t), pxε = 0, xh(t) = 0, εh(t) = 0);
— скалярная модель с зависимыми сигналами (одна влияющая величина ε(t), pxε не = 0, xh(t) = 0, εh(t) = 0);
— скалярная модель с учетом гармонических составляющих (одна влияющая величина ε(t), pxε не = 0, xh(t) не = 0, εh(t) не = 0);
— векторная модель с независимыми составляющими (вектор влияющих величин [ε] = [ε1(t),ε2(t),ε3(t)….εn(t)], матрица корреляции вектора [ε] нулевая);
— векторная модель с зависимыми составляющими (вектор влияющих величин [ε] = [ε1(t),ε2(t),ε3(t)….εn(t)] матрица корреляции вектора [ε] ненулевая);
Рассмотрим основные случаи, при этом опустим громоздкие математические выкладки и промежуточные вычисления.
Суммарная погрешность измерительного преобразователя, при статистической независимости между составляющими, может быть определена по формуле [4]:
(3)
где Δосн — основная погрешность средства измерений; Δдин — динамическая погрешность; Δдоп — дополнительная погрешность; n — число влияющих величин.
Выражение (3) также может быть представлено в следующем виде:
(4)
где Ψ(εi) — функция влияния, или коэффициент влияния, когда она линейна, или функция совместного влияния нескольких влияющих величин Ψ(εi,εj); εi — i-тая влияющая величина; μ0i — значение влияющей величины принятое при градуировке ИП; i = 1,2…n; j = 1, 2…n, при i не = j.
Мгновенное значение дополнительной погрешности может быть определено из разности сигнала с выхода преобразователя и входного сигнала:
Δдоп(t) = (y(t) — x(t)) = ax(t)[ε(t) — μ0]. (5)
Так как в выражение (4) дополнительная погрешность входит в виде квадрата своего значения, то более удобно определять сразу ее квадрат, поэтому (5) запишем в виде:
Δ2доп(t) = a2x2(t))[ε(t) — μ0]2.
В технологических измерениях, как правило, интерес представляет не мгновенное, а среднее значение измеряемого параметра, а, следовательно, и расчет дополнительной погрешности необходимо проводить в «среднем» за период времени.