Выбрать главу
ВОЛНЫ ВЕРОЯТНОСТИ

Итак, выстрелив электроном по мишени, мы не сумеем заранее вычислить, в какое именно место цели он попадает. Частица может оказаться и в центре мишени, и с краю, и даже в самых, казалось бы, неподходящих местах — например, где-нибудь далеко сбоку.

Попробуйте-ка представить себе охотника, который, прицелившись в летящую утку, убивает крота в норе.

Немыслимо!

Между тем нечто подобное допускается законами микромира.

Но тогда уместен вопрос: какие же это законы? Ведь это сплошная случайность, какая-то анархия природы!

Нет, это все-таки вполне надежные законы, но законы вероятностные. Принципиально не располагая точными начальными условиями, квантовая механика знает и учитывает своеобразие их неточности. Эту возможность ведь и открывает соотношение неопределенностей. А дальше следуют вычисления возможных путей процесса. Одни оказываются более вероятными, другие — менее вероятными, третьи—вообще практически запрещенными.

Такой метод приложим, в частности, и к «стрельбе» электронами. Квантово-механическим расчетом можно предсказать, куда частица попадет с определенной вероятностью. И если электронов очень много (а так всегда и бывает), то удается весьма точно предвидеть, как они распределятся по цели при «стрельбе».

И вот что интересно: квантовомеханические вероятности весьма мало похожи на те, с которыми мы встречаемся в обыденной жизни, — скажем, при учете случайных ошибок в стрельбе по мишени.

Вот характерный пример.

Послав пулеметную очередь в маленькое окно (отвесно к стене), мы убеждены, что пули с самой большой вероятностью попадут в противоположную стену как раз против окна. С меньшей вероятностью они окажутся чуть-чуть рядом и т. д.

А как поведут себя не пули, а электроны, пущенные отвесным пучком в подобное окно (разумеется, достаточно маленькое)?

Электроны распределятся по противоположной стене на первый взгляд совершенно непонятным образом — концентрическими кругами! Правда, скорее всего, они, как и пули, ударятся о стенку точно против окна. Но немного подальше от центрального пятна появится кольцо, в котором не будет ни одного электрона. Зато потом следует резкое увеличение вероятности попадания, затем снова провал ее, опять подъем, опять провал и т. д. Получится картина, которую физики называют кольцами электронной дифракции. Подобным способом проходят через узкие отверстия и электроны, и протоны, и нейтроны, и фотоны—все «граждане» микромира.

Меняя энергию частиц в пучке, мы изменяем размещение кругов. Чем выше энергия, тем круги резче и компактнее собраны; при малой же энергии они как бы разъезжаются и размазываются.

Изучив картину «простреленной» микрочастицами мишени, мы заметим одно удивительное сходство: оказывается, подобными же концентрическими кругами распространяются, пройдя через маленькую дырочку, обыкновенные упругие волны — например, ультразвуковые. Но с волнами положение ясное. За дырочкой они в разных местах то гасят друг друга, то складываются и усиливаются — создают так называемую дифракционную картину.

Получается, что к давно подмеченному нами факту своеобразия света, который ведет себя то как волны, то как частицы, добавляется новый факт: частицы ведут себя словно волны.

Как это понять, что это за волны?

Принимая во внимание сказанное несколькими строками выше, мы можем ответить: специфика микромира заключается в том, что наши квантовомеханические вероятности распределяются подобно распространению волн. Микрочастицы движутся, послушные волнам вероятности!

Это заключение подтверждается огромной совокупностью экспериментов, наблюдений. На нем же строится математическая логика сложной и тонкой квантовой теории.

Как мы теперь видим, квантовая механика — не что иное, как наука о вероятностях микропроцессов. И итоги ее дали физикам ключ к четкому пониманию многих странностей микромира. С нею мы можем наконец уяснить противоречивую сущность света. Не будет ошибкой сказать: в микромире свет есть поток частиц, фотонов, но проходящий через узкую щель по волновым вероятностным законам.

Волны вероятности — хозяева атома. Это они указывают разрешенные орбиты электронам, устанавливают «фотонное меню», командуют ионизацией. А сейчас мы расскажем о самой, пожалуй, любопытной сфере их деятельности.