Выбрать главу

Рис. 1.85.

Если делитель напряжения заменить его эквивалентной схемой, то исходная схема преобразуется к виду, представленному на рис. 1.86.

Рис. 1.86.

Анализируя преобразованную схему, можно заключить, что импеданс со стороны выхода делителя напряжения (Rдел) должен быть мал по сравнению с сопротивлением R. Когда диод открыт (входное напряжение превышает напряжения ограничения), выходное напряжение совпадает с напряжением, снимаемым с делителя, при этом нижнее плечо делителя представлено эквивалентным сопротивлением (рис. 1.87).

Рис. 1.87.

Следовательно, для указанных параметров схемы выходное напряжение для треугольного входного сигнала будет иметь вид, показанный на рис. 1.88.

Рис. 1.88.

Затруднение здесь возникает в связи с тем, что делитель напряжения не обеспечивает жесткофиксированного значения эталонного напряжения. Хорошо зафиксированный опорный эталонный сигнал не «плывет», а это значит, что источник такого напряжения обладает небольшим импедансом (имеется в виду эквивалентный импеданс).

На рис. 1.85 показан простой способ, с помощью которого можно «зафиксировать» схему ограничителя по крайней мере для высокочастотных сигналов — для этого к резистору 1 кОм нужно подключить шунтирующий конденсатор.

Например, конденсатор емкостью 15 мкФ с одним заземленным выводом на частотах выше 1 кГц уменьшает импеданс со стороны входа делителя до значения ниже 10 Ом. (Аналогично можно подключить конденсатор к Д1, как показано на рис. 1.82). Само собой разумеется, эффективность этого приема тем ниже, чем ниже частота, а для постоянного тока этот прием просто бесполезен.

На практике малое значение импеданса эталонного источника обеспечивается за счет использования транзистора или операционного усилителя. Такой способ, конечно, лучше, чем использование резисторов с очень малым сопротивлением, так как он не приводит к потреблению больших токов и обеспечивает значения импеданса порядка нескольких ом и ниже.

Следует отметить, что известны и другие схемы ограничения, в которых используются операционные усилители. Об этих схемах мы поговорим в гл. 4.

Интересным примером является использование ограничителя для восстановления сигнала по постоянному току в случае емкостной связи по переменному току. Смысл сказанного поясняет рис. 1.89. Подобные приемы необходимо использовать в схемах, входы которых работают аналогично диодам (например, это могут быть транзисторы с заземленным эмиттером), в противном случае при наличии емкостной связи сигнал просто пропадает.

Рис. 1.89.Восстановление сигнала по постоянному току.

Двусторонний ограничитель. Еще один ограничитель показан на рис. 1.90.

Рис. 1.90. Диодный ограничитель.

Эта схема ограничивает «размах» выходного сигнала и делает его равным падению напряжения на диоде, т. е. приблизительно 0,6 В. Может показаться, что это — очень малое значение, но если следующим каскадом схемы является усилитель с большим коэффициентом усиления по напряжению, то входной сигнал для него всегда должен быть немногим больше чем 0 В, иначе усилитель попадет в режим «насыщения» (например, если коэффициент усиления каскада равен 1000, а питающее напряжение составляет ±15 В, то входной сигнал не должен превышать диапазон ±15 мВ). Описанная схема часто используется в качестве защиты на входе усилителя с большим коэффициентом усиления.

Диоды как нелинейные элементы. Мы получим достаточно хорошее приближение, если будем считать, что ток через диод пропорционален экспоненциальной функции от напряжения на нем при данной температуре (точная зависимость между током и напряжением дается в разд. 2.10). В связи с этим диод можно использовать для получения выходного напряжения, пропорционального логарифму тока (рис. 1.91).

Рис. 1.91. Логарифмический преобразователь: идея схемы основана на нелинейной вольт-амперной характеристике диода.

Поскольку напряжение U лишь незначительно отклоняется от значения 0,6 В (под воздействием колебаний входного тока), входной ток можно задавать с помощью резистора при условии, что входное напряжение значительно превышает падение напряжения на диоде (рис. 1.92).