Выбрать главу

Ж. Панков из RCA провел 1956—1957 гг. в Париже, работая с Эгрэном. Возвратившись из Франции, он начал исследования, но без финансовой поддержки, поскольку начальство не рассматривало полупроводниковые лазеры выгодным объектом. В январе 1962 г. на конференции Американского Физического Общества Панков объявил о наблюдении рекомбинационного излучения из переходов арсенида галлия. Мэйбург почувствовал, что его могут опередить, и удвоил усилия.

В IBM, после семинара с Мэйбургом, теоретик Г. Лашер стал изучать вопрос, как сделать резонатор для полупроводникового лазера, а в то же время в соседней лаборатории в Йорктаун Хейтс М. Думке стал размышлять, как сделать лазер на арсениде галлия.

В июле 1962 г. результаты Мэйбурга обсуждались на Конференции по исследованиям твердотельных устройств в университете Нью-Гемпшира и Р. Кейс и Т. Квист из MIT сообщили, что они создали диоды арсенида галлия с люминесцентной эффективностью, которую они оценивают в 85%. Панков в мае представил подобные же результаты на другой конференции. В MIT люминесценция, излучаемая диодом, использовалась для передачи телевизионного канала, о чем было сообщено в New York Times.

На этом этапе четыре группы пустились в гонку. Р. Холл из GE принимал участие в конференции в Нью-Гемпшире и был поражен представленными результатами. На него сильное впечатление произвела высокая эффективность излучения p-n-переходов арсенида галлия, и, возвращаясь, он еще в поезде стал делать расчеты и размышлять, как получить резонатор Фабри—Перо. Идея была: взять p-n-переход, обрезать и отполировать его грани. Холл был астрономом-любителем и в школе сам построил телескоп, он знал, как можно отполировать оптические компоненты. В настоящее время резонаторы полупроводниковых лазеров получают скалыванием кристалла в нужном направлении, но в то время он не знал о такой методике. После некоторых обсуждений он получил разрешение начальства начать работу над проектом. Принципиальной трудностью было изготовление перехода GaAs, который должен был удовлетворять определенным критериям, а именно, сильно допирован. Вторая трудность была вырезать и отполировать грани так, чтобы они были параллельными друг другу. Затем следовало пропустить очень большой ток через переход, чтобы инжектировать достаточное число электронов. Ток должен был быть в виде импульса с короткой длительностью, чтобы не расплавить образец. Чтобы предотвратить чрезмерный рост температуры, следовало использовать охлаждение жидким азотом (77 К).

Хотя Холл был последним, включившимся в гонку, он оказался первым, правда на короткое время, и получил в сентябре 1962 г. первый лазерный диод. Бернард (из Франции) несколько раз посещал лабораторию Холла, обсуждая возможность полупроводниковых лазеров. Во время одного из визитов он появился как раз, когда группа Холла получила результат, но еще не оформила его для публикации. Поэтому достижение держалось в секрете. У Холла возникла проблема, как обсуждать возможность сделать лазер, не сообщая Бернарду, что он уже работает в соседней комнате.

Конференция в Нью-Гемпшире вдохновила также Н. Холоньяка из GE, эксперта по арсениду галлия. Когда первый диод заработал, почти одновременно несколько групп объявили о лазерном действии на p-n-переходах GaAs. Во всех случаях использовалось охлаждение до 77 К, а накачка производилась импульсами тока высокой интенсивности с короткой длительностью (несколько микросекунд). О лазере группы GE было объявлено в работе от 24 сентября 1962 г.; о втором лазере группы М. Натана из IBM Йорктаун Хейтс было объявлено 4 октября; а о третьем из Линкольновской лаборатории MIT — 23 октября. Холоньяк сообщил о своем лазере 17 октября. Все эти лазеры были сделаны на переходе арсенида галлия, охлаждались жидким азотом, и накачивались интенсивными импульсами тока длительностью несколько микросекунд.

Устройство Холла (рис. 60) представляло куб со стороной 0.4 мм, с переходом, расположенным в горизонтальной плоскости, в центре. Передняя и задняя грани были отполированы параллельно друг к другу и перпендикулярно к плоскости перехода, образуя резонатор Фабри—Перо (арсенид галлия обладает высоким показателем преломления, поэтому френелевское отражение на границе полупроводник—воздух дает достаточно высокий коэффициент отражения). При такой геометрии получается относительно длинный путь в области перехода, где инжектированные носители рекомбинируют и испускают свет, распространяющийся взад-вперед между отполированными гранями (зеркалами резонатора). Лазер работал при подаче импульсов тока длительностью 5—20 мкс, причем полюс тока подавался на p-допированную сторону перехода, а минус на n-допированную сторону. Диод помещался в жидкий азот. Когда ток достигал очень большого значения, 8500 А/см2, возникала лазерная генерация, что проявлялось в резком увеличении испускаемого излучения и в сужении спектральной линии от 125 до 15 А°.

Рис. 60. Схема полупроводникового лазера на p-n-переходе простейшего типа. Лазерное излучение испускается в тонком активном слое между p и n зонами, и отражается взад и вперед параллельными гранями F1, F2, которые действуют как зеркала резонатора

Натан работал с несколько отличной системой, используя переход без резонатора. Порог, достигаемый при температуре жидкого азота, очевидно, был выше между 10 000 и 100 000 А/см2. Т. Квист из MIT использовал структуру 1,4x0,6 мм2 с отполированными короткими гранями. При температуре жидкого азота порог был около 1000 А/см2. Наконец, Холоньяк использовал переход соединения арсенида галлия с фосфидом. Используя этот материал, удалось получить генерацию при 6000—7000 А/см2 вместо 8400 А/см2, когда использовался простой образец GaAs.

В России (СССР), вскоре после создания лазеров в США, В.С. Багаев, Н.Г. Басов, Б.М. Вул, Б.Д. Копыловский, О.Н. Крохин, Ю.М. Попов, А.П. Шотов и др. создали лазерный диод в ФИАНе. Этот результат обсуждался на 3-й Международной конференции по квантовой электронике в Париже, в 1963 г.

Первые лазеры делались из одного и того же материала с переходом между n и p частями. Они имели высокие пороги. В 1963 г. X. Кромер предложил использовать гетеропереходы, в которых полупроводник с относительно узкой запрещенной зоной располагается между двумя слоями полупроводника с более широкими запрещенными зонами (сэндвич-структура). В то же время аналогичное предложение сделали Ж.И. Алфёров и Р.Ф. Казаринов из Физико-технического института им. А.Ф. Иоффе (г. Ленинград). Российские ученые не опубликовали свое предложение. Прошло шесть лет, прежде чем в Bell Labs и в RCA были разработаны первые гетероструктурные лазеры. К тому времени Алфёров и его сотрудники разработали более сложные многослойные структуры, которые сегодня известны как лазеры с двойной гетероструктурой. Усилия Ж. Алфёрова и X. Кромера были отмечены Нобелевской премией по физике в 2000 г. «за разработку полупроводниковых гетероструктур, используемых в высокоскоростной электронике и в оптоэлектронике» вместе с Джеком Килби «за его вклад в изобретение интегральной схемы».

Ж.И. Алфёров родился в Витебске (Белоруссия) в 1930 г. Он окончил Электротехнический институт им. В. И. Ленина (Ленинград) в 1952 г. и в 1953 г. поступил в Физико-технический институт. С 1987 г. он директор этого института. Алфёров — академик РАН и депутат Государственной Думы.

Герберт Кромер родился в Веймаре (Германия) в 1928 г. и получил докторскую степень в университете Гёттингена в 1952 г. за диссертацию, посвященную только появившимся тогда новым транзисторам. В 1968 г. он стал работать в университете Колорадо, а с 1976 г. — в университете Калифорнии (Санта Барбара).

Разработка полупроводниковых лазеров тормозилась по нескольким причинам. Необходимо было разработать новую технологию для работы с полупроводниками, учитывая, что хорошо разработанная технология для кремния не годится. Проблемой также была необходимость работы с короткими импульсами большого тока при низких температурах. По этой причине КПД лазеров был низок. Значительный шаг вперед в решении этих проблем был сделан в 1969 г. путем введения гетероструктур, В гетероструктурном лазере простой p-n-переход заменяется многослойной структурой полупроводников разного состава (рис, 61). Активная область уменьшается по толщине, и ток, требуемый для лазерной генерации, существенно уменьшается, что соответственно уменьшает выделение тепла. Это приводит к тому, что уже не требуется охлаждение, и лазер может работать при комнатной температуре.