Связь с супермоделью / Общество и наука / Наука
Связь с супермоделью
/ Общество и наука / Наука
Наши ученые научились моделировать лекарства и испытывать их задолго до того, как они становятся реальными пилюлями, упакованными в блистер
РОСсийские специалисты в области математического моделирования неожиданно оказались невероятно востребованными в мире. Сегодня на них делают ставку в исследовательских отделах крупнейших мировых фармацевтических компаний. В дополнение к привычному in vitro в словаре исследователей появилось новое выражение in silico — воспроизведенный виртуально. Наши ученые научились моделировать лекарства и испытывать их задолго до того, как они становятся реальной пилюлей. Что дает это больным, которым нужны лекарства здесь и сейчас?
Моделируй это
Практически все крупные фармацевтические компании открыли подразделения математического моделирования. Появилась новая профессия — моделер: тот, кто разрабатывает модели. Фармакологи пошли на это не от хорошей жизни. В последние 10 лет продуктивность научных исследований в этой сфере падает. Все чаще случаются провалы испытаний лекарств на той стадии разработки, когда их создатели уже были уверены в успехе. Получается парадокс. «Сейчас в мире доступно около трех миллионов низкомолекулярных органических соединений, — говорит заведующий лабораторией биоинформатики бизнес-инкубатора МФТИ Ян Иваненков. — Около трех лет назад мы с китайским коллегой анализировали крупные базы данных различных компаний. Выяснили, что доступное химическое пространство уже довольно плотно освоено». Однако американская Food and Drug Administration, например, ежегодно регистрирует все меньше новых препаратов. И стоимость их разработки постоянно растет. А между тем в мире есть множество болезней, лекарств для которых не существует.
С другой стороны, непонятно, как можно считать достижением изобретение нового онкопрепарата, который стоит астрономических денег, но при этом обладает множеством побочных эффектов и продлевает жизнь на месяц...
Впрочем, выяснилось, что моделирование может помочь разрешить эту ситуацию. Все началось в 1946 году, когда отец кибернетики Норберт Винер вместе с физиологом Артуро Розенблютом решили создать математическую модель фибрилляции. «В 50—80-е годы у них нашлось немало последователей, — рассказывает ведущий научный сотрудник пущинского Института теоретической и экспериментальной биофизики РАН, заведующий лабораторией электрофизиологии МФТИ Рубин Алиев. — Многие поначалу относились к моделированию в биологии с долей скептицизма. Слишком мало параметров тогда учитывали». Все изменилось, когда во второй половине XX века биология устремилась вперед. «На рубеже веков произошло сразу несколько знаковых событий, — говорит Ян Иваненков. — В биологии — расшифровка человеческого генома и появление высокопроизводительного скрининга. В химии — комбинаторный синтез. Объем информации многократно вырос. Ее надо было обобщать и анализировать». Еще в конце 90-х руководитель российской части проекта «Геном человека» Лев Киселев предсказывал, что медицина и биология в XXI веке станут царством математиков. «Сейчас развивается системная биология, — рассказывает руководитель российской группы математического моделирования «Новартис Фарма» Кирилл Песков. — Исследователи получают огромные массивы данных. Предположим, что за какой-то процесс в организме отвечает 400 белков. Они могут работать по-разному. Существующие сегодня экспериментальные техники позволяют одновременно измерить экспрессию всех генов, кодирующих эти белки, в той или иной клетке. Как оценить и интерпретировать эти цифры? С помощью математических моделей».
У математиков и раньше был опыт работы с большими массивами данных. Например, им пришлось немало поломать голову, рассчитывая траектории посадки космических аппаратов. При этом приходилось учитывать множество факторов вплоть до ударов отдельных молекул газа об обшивку. Методы, наработанные в космосе, использовали эпидемиологи — для моделирования процессов, происходящих в человеческой популяции.