Персонально в руки
Разработчики лекарств, подбирая мишени для препаратов, теперь тоже не хотят действовать вслепую. «Вот хотя бы один пример, — рассказывает Кирилл Песков. — Предположим, исследователи решили сравнить пациентов, перенесших лечение злокачественных опухолей. Кто-то из них вылечился, кто-то нет. У всех отобрали образцы тканей и сделали карты экспрессии генов. Выяснилось, что у них по-разному работали сотни белков, каждый из которых отвечал за какой-то компонент метаболизма. С помощью математической модели эти данные попытались связать воедино. Оказалось, что клетки пациентов с плохим прогнозом обладают более активным метаболизмом. То есть они интенсивнее живут. Исходя из этих данных, можно попытаться понять, какой каскад физиологических процессов важнее для исхода лечения и на какую мишень нужно направить новый препарат».
Сейчас такие вещи называют модным словом «персонализированная медицина». Ведь лекарство будет работать только у пациентов с «быстроживущими» клетками. Предположим, ученые нашли мишень для нового препарата — ту физиологическую цепочку, которую нужно прервать. Подобрать конкретное вещество, которое сможет это сделать, тоже помогает моделирование. Сегодня несложно синтезировать несколько тысяч молекул веществ с похожими свойствами. Весь секрет в том, чтобы выбрать из них лучшие. «Чтобы создать компьютерную модель, способную с высокой вероятностью прогнозировать свойства органических соединений, нужна независимая валидация, на которую могут уйти годы», — рассказывает Ян Иваненков. Предположим, несколько подходящих молекул удалось отобрать. Наступает этап биологического моделирования на основе экспериментальных данных. На языке математики специалисты детально реконструируют механизм работы лекарства. Этот этап часто называют нулевой фазой клинических испытаний. Ведь, сопоставив эти данные с другими, можно многое спрогнозировать. Взять, например, болезнь Альцгеймера. Недавно в третьей фазе клинических испытаний провалились сразу несколько лекарств, на которые возлагали много надежд. Проблема в том, что это заболевание развивается гораздо дольше, чем длится любое клиническое испытание, — оно может прогрессировать десятки лет. Так что спасти положение способно только математическое моделирование. Специалисты хотят выделить разные стадии болезни — у одних пациентов уже наступили необратимые изменения, им препараты не помогут. Других еще можно вылечить. Значит, их надо выделить из всей массы больных. В других случаях такой подход помогает упростить клинические испытания — сократить время и снизить стоимость.
Особая проблема — редкие генетические болезни. Если пациентов несколько человек на миллион, то как набрать группу для клинических испытаний? Даже если их удалось провести, как без клинических исследований рассчитать дозировку для детей? Первое, что приходит в голову, — уменьшить дозу препарата. Когда такой вопрос встал перед разработчиками одного орфанного лекарства, они провели математические расчеты. Посмотрели, как быстро препарат связывается с белком, повышенное количество которого вызывает болезнь, нашли зависимость между возрастом человека и выработкой этого белка в организме. Оказалось, что дозы, рассчитанной на взрослого пациента, ребенку может не хватить. Таким же образом можно рассчитать действие лекарственных коктейлей из нескольких препаратов, которые применяются для лечения СПИДа или гепатита. У многих немало побочных эффектов. Математические модели помогают распутать головоломку: что является эффектом одного вещества, что — другого, а что — результат их совместного действия. Специалисты предсказывают: в недалеком будущем таким же образом можно будет просчитывать все схемы лечения несколькими препаратами — чтобы не вышло, что пациента лечат и калечат одновременно.
Электротаблетки
Самая свежая тенденция в мире моделеров — создание математических моделей работы систем организма в формате 3D. С их помощью исследователи уже сегодня могут сделать многое. Например, разрабатывая препарат для ингаляций, можно заранее предсказать, когда он достигнет легких пациента. Модель движения жидкости в глазном яблоке позволяет рассчитать, куда попадет лекарство. «Пока это направление в фармацевтике не очень развито, — говорит Кирилл Песков. — А в автомобиле- или самолетостроении 3D-модели широко используют». Похоже, скоро фармацевты ликвидируют это отставание. Эксперты предсказывают взрыв технологий биоэлектронной медицины. «Суть в том, чтобы изменять электрические сигналы между клетками нервных волокон в организме человека», — рассказывает руководитель направления исследований и разработок лекарственных средств и вакцин GlaxoSmithKline Монсеф Слауи. По мнению исследователей, нервная система связана с широким спектром функций организма: от контроля аппетита и кровяного давления до производства противовоспалительных цитокинов и выработки инсулина. «Сейчас исследователи тщательно изучают топографию распределения биопотенциалов, смотрят, как это работает в реальном времени, — рассказывает Слауи. — Такие технологии развиваются в программах с миллиардным финансированием в США и Европе». О том, насколько эта тема горяча, говорит тот факт, что в этом году будет учреждена научная премия по биоэлектронике нобелевского веса: в один миллион долларов. Пройдет и первая международная конференция по разработке биоэлектронных лекарств. И тут без математических 3D-моделей не обойтись. Наши исследователи не будут на таких конференциях скромными статистами. «В России есть группы, работающие в этой области, — говорит замдиректора по науке Института вычислительной математики РАН Юрий Василевский. — Из пяти-шести замкнутых математических моделей кровообращения в теле человека две созданы в нашей стране. В нашем институте разработали первую в мире биоимпедансную модель человеческого организма: она показывает различия электропроводности составляющих его тканей. Конечно, у нас нет миллиардных грантов на эти исследования, но мы перераспределяем деньги, заработанные институтом. То, что получили за вычислительные технологии, сделанные для нефтегазовой отрасли, тратим на перспективные разработки».