«Нормы» деятельности в своей совокупности противостоят подрастающим поколениям в качестве образцов деятельности, которыми нужно «овладеть». Поскольку сама деятельность возможна лишь в связи со средствами производства и различными знаковыми системами, то те и другие выступают как формы «опредмечивания» деятельности вообще и норм деятельности в частности. Поэтому грубо, в первом приближении, можно сказать, что нормы деятельности выступают перед подрастающими поколениями в виде средств производства и знаковых систем, вплетенных в ткань строго определенной деятельности. Ребенок должен овладеть общественно-фиксированными «нормами» деятельности, а для этого - усвоить или освоите предметные и знаковые системы, которые в них входят. Механизмы овладения и усвоения, применяемые индивидами, будут определять тот «субъективный способ», каким отдельные индивиды будут в дальнейшем осуществлять личную деятельность. Последняя, очевидно, уже не может быть взята безотносительно к субъективности. Но для того чтобы изучить механизмы и закономерности процессов овладения и усвоения, нужно предварительно выяснить, чем овладевают и что усваивают, то есть нужно предварительно выделить и описать «нормы» деятельности. В этом и состоит задача логического анализа в контексте психолого-педагогических исследований, и она определяет отношение его к психологии и педагогике.
Эмпирическим материалом для логического исследования, охарактеризованного выше, служат, во-первых, зафиксированные в форме знаковых текстов процессы решения задач, во-вторых, системы знаний. Исходными являются процессы решения, а системы знаний рассматриваются уже на их основе, как вторичные образования.
В этом анализе необходимо резко различать и в каком-то смысле даже противопоставлять друг другу производственные (включая сюда и познавательные) и учебные задачи. Процесс решения познавательных производственных задач рассматривается как замещение исходной объективной ситуации (она берется всегда в каком-либо контексте деятельности) «выражениями» какой-либо знаковой системы с последующим формальным движением в этой знаковой системе.
Вот один из простых примеров подобной деятельности. Ребенку дается задание: «Принеси из «магазина» (соседняя комната) столько тарелочек, чтобы хватило всем куклам в этой и в другой комнате». Ребенок считает кукол в этой комнате, потом в другой, складывает оба числа, идет в «магазин», отсчитывает тарелочки в соответствии с этим числом и затем расставляет их перед куклами. Схематически мы изображаем этот процесс решения задачи так:
где х и у — совокупности кукол в комнатах, Δ1 и Δ2 (читается: «дельта») — операция пересчета, (А), (В) и (С) — числа,
(читается: «набла») — операция отсчета, z — все множество взятых тарелочек. Нам важно заметить, что при таком подходе процесс мыслительной деятельности ребенка (или процесс решения задачи) предстает как двухплоскостное движение: в нижней плоскости лежат реальные объекты — куклы, тарелочки, в верхней плоскости — объекты совсем другого рода, цифры, и с объектами каждой плоскости производятся свои специфические действия (подробнее об этом см. [1960 а*; 1962 с, II–III]).
Мы привели один из самых простых примеров, и поэтому нам удалось изобразить процесс решения в двухплоскостной схеме. Но подавляющее большинство производственных задач может быть решено только в том случае, если мы произведем не одно, а целый ряд как бы надстраивающихся друг над другом замещений. Тогда мы получим уже не две, а три, четыре, пять или даже еще большее число плоскостей в схеме процесса решения задачи и должны будем говорить о слоях решения, каждый из которых включает две связанные между собой плоскости [1960 а*]. Характерными примерами процессов такого вида являются производственные задачи, решаемые с помощью средств геометрии. Важно специально подчеркнуть, что на определенных этапах решения этих задач знаковые формы, замещающие исходные объекты (такими знаковыми формами могут быть, к примеру, чертежи), рассматриваются как объекты особого рода (функциональные объекты в системе слоя) и к ним применяется деятельность, внешне напоминающая содержательные преобразования самих объектов. Но по сути дела она остается знаковой деятельностью, применяемой к знакам. Непонимание этого момента приводило ко многим затруднениям и ошибкам как в истории науки, так и в обучении (подробнее эти вопросы на материале геометрического чертежа рассматриваются в [Разин, 1963]).
Процессы решения учебных задач, заданных определенным текстом условий, рассматриваются нами не как замещения объективных ситуаций знаковыми системами, а как переходы от текста условий к выражениям тех знаковых систем, в которых эти задачи могут быть решены, и еще дальше — как переходы от этих знаковых систем к объективным ситуациям [1962 с, II, IV–V]. Нам важно подчеркнуть, что и в этом случае процесс решения задачи выступает минимум как двухплоскостное движение: одну плоскость образует текст условий, а другую — привлекаемая для решения знаковая система. (Для упрощения рассуждения мы выше просто не касались тех движений в знаковых системах, которые обязательно входят в каждый процесс решения.)
Одна и та же задача может решаться с помощью разных знаковых систем и, следовательно посредством разных деятельностей. И это относится не только к «формальным» движениям внутри знаковых систем; с изменением системы меняется и характер той деятельности, посредством которой осуществляется переход от условий задачи к знаковым выражениям: для одних систем она будет простой и компактной, для других — сложной, многократно опосредованной. Это различие в деятельности перехода определяется отношением знаковой системы к задачам, ее, если можно так сказать, «возможностям» в отношении этих задач. С этой точки зрения, как выяснилось, можно говорить о «совершенстве» и «несовершенстве» знаковых систем, об их «адекватности» и «неадекватности» задачам. Покажем это на нескольких примерах.
Арифметические задачи могут решаться с помощью нескольких различных знаковых систем, и соответствующие деятельности образуют то, что называют алгебраическим способом решения, арифметическим способом или способом предметного моделирования [1962 с, II–V]. Сравним два первых способа между собой.
Начнем с алгебраического. В случае простых задач переход от их условий к выражениям знаковой системы представляет собой последовательное обозначение (или отображение) элементов текста условий в знаках системы. К примеру, текст условий задачи «На дереве сидели птички |1, потом прилетели еще |2 3 |3, и стало |4 9 |5» отображается в пятиэлементном выражении «Х+3=9». С точки зрения последовательности отображения и усваиваемого в самом начале обучения «смысла» знаков «+» и «—» структура алгебраического выражения «изоморфна» структуре текста (мы изобразили последнюю вертикальными линиями членения с индексами). Точнее, наверное, нужно сказать, что построение выражения в алгебраической системе предполагает очень простую («линейную») деятельность «чтения» (то есть расчленения и понимания) текста. Знаки «+» и «—» в алгебраических выражениях (благодаря тому же изоморфному отношению) изображают предметные преобразования совокупностей, описываемые в условиях задачи, или отношения частей к целому и целого к части, непосредственно следующие из текста условий. (Они не являются знаками операций, ибо никаких арифметических преобразований в этой знаковой системе и не нужно делать; в этом отношении они принципиально отличаются от арифметических знаков «+» и «—», имеющих чисто оперативный смысл.) После того, как выражение алгебраической системы получено, оно преобразуется (по правилам системы) к виду, который может быть отождествлен с каким-либо выражением арифметической системы. Например, алгебраическое выражение «Х+3=9» преобразуется к виду «9–3=Х», а это последнее замещается арифметическим выражением «9–3=». После перехода в арифметическую систему производятся собственно арифметические операции — замещение суммы или разности одним числом в соответствии со знаком полученного выражения: в данном примере разность 9–3 замещается числом 6. Наглядно-символически весь процесс может быть изображен в трехплоскостной схеме вида: