Выбрать главу

Самая важная часть программы находится в теле методов tick () и tock () из класса TickTock. Начнем с метода tick (). Для удобства анализа ниже представлен исходный код этого метода. synchronized void tick(boolean running) { if(!running) { // остановить часы state = "ticked"; notifyO; // уведомить ожидающие потоки return; } System.out.print("Tick "); state = "ticked"; // установить текущее состояние после такта "тик" notify(); // уведомить метод tock() о возможности продолжить выполнение try { while(!state.equals("tocked") ) wait(); // ожидать завершения метода tock() } catch(InterruptedException exc) { System.out.println("Thread interrupted."); } }

Прежде всего обратите внимание на то, что в объявлении метода tick () присутствует ключевое слово synchronized, указываемое в качестве модификатора доступа. Как пояснялось ранее, действие методов wait () и notify () распространяется только на синхронизированные методы. В начале метода tick () проверяется значение параметра running. Этот параметр служит для корректного завершения программы, имитирующей работу часов. Если он принимает логическое значение false, имитатор работы часов должен быть остановлен. Если же параметр running принимает логическое значение true, а переменная state — значение "ticked", вызывается метод notify (), разрешающий ожидающему потоку возобновить свое исполнение. Мы еще вернемся к этому вопросу несколько ниже.

По ходу работы имитируемых часов в методе tick () выводится слово "Tick", переменная state принимает значение "ticked", а затем вызывается метод notify (). Вызов метода notify () возобновляет исполнение ожидающего потока. Далее в цикле while вызывается метод wait (). В итоге выполнение метода tick () будет приостановлено до тех пор, пока другой поток не вызовет метод notify (). Таким образом, очередной шаг цикла не будет выполнен до тех пор, пока другой поток не вызовет метод notify() для того же самого объекта. Поэтому когда вызывается метод tick (), на экран выводится слово "Tick" и другой поток получает возможность продолжить свое исполнение, а затем выполнение этого метода приостанавливается.

В том цикле while, в котором вызывается метод wait (), проверяется значение переменной state. Значение "tocked", означающее завершение цикла, будет установлено только после выполнения метода tock (). Этот цикл предотвращает продолжение исполнения потока в результате ложной активизации. Если по окончании ожидания в переменной state не будет присутствовать значение "tocked", значит, имела место ложная активизация, и метод wait () будет вызван снова.

Метод tock () является почти точной копией метода tick (). Его отличие состоит лишь в том, что он выводит на экран слово "Tock" и присваивает переменной state значение "tocked". Следовательно, когда метод tock() вызывается, он выводит на экран слово "Tock", вызывает метод notify (), а затем переходит в состояние ожидания. Если проанализировать работу сразу двух потоков, то станет ясно, что за вызовом метода tick () тотчас следует вызов метода tock (), после чего снова вызывается метод tick (), и т.д. В итоге оба метода синхронизируют друг друга.

При остановке имитатора работы часов вызывается метод not if у (). Это нужно для того, чтобы возобновить исполнение ждущего потока. Как упоминалось выше, в обоих методах, tick() и tock (), после вывода сообщения на экран вызывается метод wait (). В результате при остановке имитатора работы часов один из потоков обязательно будет находиться в состоянии ожидания. Следовательно, последний вызов метода notify () необходим. В качестве эксперимента попробуйте удалить вызов метода notify () и посмотрите, что при этом произойдет. Вы увидите, что программа зависнет, и вам придется завершить ее нажатием комбинации клавиш . Дело в том, что когда метод tock () в последний раз получает управление, он вызывает метод wait (), после чего не происходит вызов метода not if у (), позволяющего завершиться методу tock (). В итоге метод tock () остается в состоянии бесконечного ожидания.

Если у вас еще остаются сомнения по поводу того, что методы wait () и notify () необходимы для организации нормального выполнения программы, имитирующей работу часов, замените в ее исходном коде класс TickTock приведенным ниже его вариантом. Он отличается тем, что в нем удалены вызовы методов wait () и notify (). // В этой версии вызовы методов wait() и notify() отсутствуют, class TickTock { String state; // содержит сведения о состоянии часов synchronized void tick(boolean running) { if(!running) { // остановить часы state = "ticked"; return; } System.out.print("Tick "); state = "ticked"; // установить текущее состояние после такта "тик" } synchronized void tock(boolean running) { if(!running) { // остановить часы state = "tocked"; return; } System.out.println("Tock") ; state = "tocked"; // установить текущее состояние после такта "так" } }

Теперь программа выводит на экран следующие сообщения: Tick Tick Tick Tick Tick Tock Tock Tock Tock Tock

Это происходит потому, что методы tick() и tock() не взаимодействуют друг с другом. Приостановка, возобновление и остановка потоков

Иногда оказывается полезно приостановить или даже полностью прекратить исполнение потока. Допустим, отдельный поток используется для отображения времени. Если пользователю не нужны часы на экране, то отображающий их поток можно приостановить. Независимо от причин, по которым требуется временная остановка потока, сделать это нетрудно, как, впрочем, и возобновить исполнение потока.

Механизмы приостановки, возобновление и остановки потоков менялись в разных версиях Java. До появления версии Java 2 для этих целей применялись методы suspend (), resume () и stop (), определенные в классе Thread. Ниже приведены общие формы их объявления. final void resume() final void suspend() final void stop()

На первый взгляд кажется, что упомянутые выше методы удобны для управления потоками, но пользоваться ими все же не рекомендуется по следующим причинам. При выполнении метода suspend () иногда возникают серьезные осложнения, приводящие к взаимоблокировке. Метод resume () сам по себе безопасен, но применяется только в сочетании с методом suspend (). Что же касается метода stop () из класса Thread, то и он не рекомендуется к применению, начиная с версии Java 2, поскольку может вызывать порой серьезные осложнения в работе многопоточных программ.

Если методы suspend (), resume () и stop () нельзя использовать для управления потоками, то может показаться, что приостановить, возобновить и остановить поток вообще нельзя. Но это, к счастью, не так. Поток следует разрабатывать таким образом, чтобы в методе run () периодически осуществлялась проверка, следует ли приостановить, возобновить или остановить поток. Обычно для этой цели используются две флаговые переменные: одна — для приостановки и возобновления потока, другая — для остановки потока. Если флаговая переменная, управляющая приостановкой потока, установлена в состояние исполнения, то метод run () должен обеспечить продолжение исполнения потока. Если же эта флаговая переменная находится в состоянии приостановки, в работе потока должна произойти пауза. А если переменная, управляющая остановкой потока, находится в состоянии остановки, исполнение потока должно прекратиться.

Следующий пример программы демонстрирует один из способов реализации собственных версий методов suspend (), resume () и stop (). // Приостановка, возобновление и остановка потока. class MyThread implements Runnable { Thread thrd; // Если эта переменная принимает логическое значение // true, исполнение потока приостанавливается. volatile boolean suspended; // Если эта переменная принимает логическое значение // true, исполнение потока прекращается. volatile boolean stopped; MyThread(String name) { thrd = new Thread(this, name); suspended = false; stopped = false; thrd.start(); } // Точка входа в поток public void run() { System.out.println(thrd.getName() + " starting."); try { for(int i = 1; i < 1000; i++) { System.out.print(i + " "); if((i %10)==0) { System.out.println() ; Thread.sleep(250) ; } // Для проверки условий приостановки и остановки потока // используется следужхций синхронизированный блок. synchronized(this) { while(suspended) { wait(); } if(stopped) break; } } } catch (InterruptedException exc) { System.out.println(thrd.getName() + " interrupted."); } System.out.println(thrd.getName() + " exiting."); } // остановить поток synchronized void mystopO { stopped = true; // Следующие операторы обеспечивают полную // остановку приостановленного потока, suspended = false; notify(); } // приостановить поток synchronized void mysuspend() { suspended = true; } // возобновить поток synchronized void myresume() { suspended = false; notify(); } } class Suspend { public static void main(String args[]) { MyThread obi = new MyThread("My Thread"); try { Thread.sleep(1000); // позволить потоку оЫ начать исполнение obi.mysuspend(); System.out.println("Suspending thread."); Thread.sleep(1000); obi.myresume(); System.out.println("Resuming thread."); Thread.sleep(1000); obi.mysuspend(); System.out.println("Suspending thread."); Thread.sleep(1000); obi.myresume(); System.out.println("Resuming thread.") ; Thread.sleep(1000); obi.mysuspend() ; System.out.println("Stopping thread."); obi.mystop(); } catch (InterruptedException e) { System.out.println("Main thread Interrupted"); } // ожидать завершения потока try { obi.thrd.join() ; } catch (InterruptedException e) { System.out.println("Main thread Interrupted"); } System.out.println("Main thread exiting."); } }