С каплей, покрытой панцирем, никакие загадки не связаны — все ясно, объяснимо, предсказуемо. И все же, когда встречаешься с каплей, которая, как бы защищая себя от исчезновения, покрывается панцирем, невольно задумываешься над тем, как много неожиданных следствий могут обусловить абсолютно ясные причины.
Не прячьтесь от дождя! Вам что, рубашка
Дороже, что ли, свежести земной?
В рубашке вас схоронят. Належитесь,
А вот такого яркого сверканья
Прохладных струй, что льются с неба,
Прозрачных струй, в себе дробящих солнце,
И пыль с травы смывающих,
И листья
Полощущих направо и налево,
Их вам увидеть будет не дано.
Владимир Солоухин
Судьбы дождевых капель, летящих с неба на землю, настолько сложны и превратны, что рассказу о них можно было посвятить целую книгу. Иная капля, зародившись где-то в облаках и падая в теплых сухих слоях воздуха, может испариться, исчезнуть, не достигнув земли. Иная по дороге столкнется с подобной себе и, обретя в содружестве силу и массу, преодолеет все трудности пути, прольется дождем на землю. Иная капля, приспосабливаясь к противотоку воздуха, изменит свою форму. Еще многое другое, о чем в кратком очерке не расскажешь, может произойти с дождевой каплей на ее пути к земле.
При прочих неизменных условиях судьба летящей капли существенно зависит от ее массы. Поэтому, оставив без внимания капли промежуточных размеров, проследим за тем, что происходит с каплями маленькими и большими.
Однако вначале необходимо договориться, какие капли мы будем считать «маленькими», а какие «большими». В очерке об опыте Плато мы обсуждали вопрос о «маленькой» капле, лежащей на твердой подложке, и выяснили, что в этих условиях «маленькой» следует считать такую каплю, у которой лапласовское давление успешно борется с давлением, обусловленным ее тяжестью, и поэтому капля остается почти сферической. Видимо, подобный критерий надо применить и к дождевой капле, но только при этом с лапласовским давлением (Рл), стремящимся сохранить сферическую форму капли, надо сравнивать деформирующее давление (Рυ), обусловленное сопротивлением, которое оказывает летящей капле воздух. Если Рл>>Рυ, капля сохранит форму шарика и мы будем ее считать «маленькой», а если Рл< < Рυ, капля будет сильно деформироваться давлением Рυ и ее мы будем считать
«большой». Рл нам известно, оно равняется 2α/R, а вот вычислить Рυ — задача непростая. Для нас, однако, важно лишь знать, что Рυ растет с R и поэтому должны существовать такие размеры, при которых выполняются два предельных неравенства между Рл и Рυ, явившиеся для нас основанием делить капли на «маленькие» и «большие».
Расчет приводит к тому, что к числу «маленьких» надо относить капли, размер которых порядка десятков микрон, а к числу «больших» те, радиус которых порядка миллиметров.
Теперь о полете маленькой капли, которая, падая, сохраняет форму шарика. Если с ее формой ничего не происходит и шарик остается шариком, то о движении капли лучше говорить так: воздух, двигаясь снизу вверх, вязко обтекает водяной шарик. Попробуем вычислить скорость, с которой при этом водяной шарик — капля — приближается к земле.
Начнем с примера, который имеет прямое отношение к нашей задаче о вязком обтекании воздухом капли. Допустим, к нити из вязкого вещества — смолы или разогретого стекла — прикреплен грузик, под действием которого нить будет удлиняться, вязко течь. Очевидно, ее удлинение (Δl) будет тем большим, чем длиннее нить (l), больше время течения (t), больше нагрузка, приложенная к нити (Р), и меньше вязкость (η) вещества, из которого она изготовлена. Сказанное можно записать в виде формулы
Δl =lPt/η,
из которой следует, что скорость удлинения υ = Δl /t= lP/η
Возвратимся теперь к вопросу о вязком обтекании воздухом капли-шарика. Этот процесс должен подчиняться тому же закону, что и вязкое течение нити. Различие заключается лишь в том, что в одном случае течет смола или стекло, а в другом — воздух. Важно, что в обоих случаях имеет место вязкое течение. Обратим, однако, внимание на то, что в интересующей нас задаче характерный размер — не длина нити, а радиус шарика R и что напряжение Р пропорционально отношению силы F, тянущей шарик, к площади его сечения, т. е Р≈F/πR2 .Применительно к шарику формулу, определяющую скорость, можно переписать в виде: υ ≈ F/Rη . Мы воспользовались знаком «пропорционально» потому, что не учли конкретной геометрии потока воздуха вокруг шарика. Точный расчет приводит к формуле, которая от нашей отличается лишь множителем 1/6 .π, и таким образом: