Выбрать главу

Попытаемся разобраться в происходящем. Общая осо­бенность, характерная для всех трех типов воздушных пузырьков, выдутых из трех трубок разных диаметров, заключается в том, что, двигаясь, они колеблются. Амп­литуда этих колебаний оказывается тем большей, чем боль­ше размер пузырька. У самого крупного амплитуда ока­залась настолько большой, что при первом же колеба­нии пузырь прорвался, как бы сам себя проколол, и превра­тился в бублик. А пузырьки поменьше колеблются с меньшими амплитудами и сохраняют свою целостность.

В чем причина возникновения колебаний, кто их про­воцирует, как они поддерживаются? Ответ подсказывают кадры первого из отснятых эпизодов. На них отчетливо видно, что снизу вода устремляется в объем оторвавше­гося пузыря. Снизу потому, что именно здесь давление во­ды максимально. В этот момент форма пузыря искажается, перестает быть сферической, а значит, ее поверхность увеличивается. Естественно, пузырь начинает бороться с этим насилием, стремясь вернуть себе сферическую фор­му. Колебания возникают в конкурентной борьбе: раз­ность давлений вверху и внизу пузыря искажает форму, а его стремление к уменьшению собственной поверхности эту форму восстанавливает.

Пользуясь понятием о лапласовском и гидростатичес­ком давлениях, можно об этой борьбе рассказать так: раз­ность гидростатических давлений, которая пропорцио­нальна диаметру пузыря, деформирует пузырь, а лапласовское давление, обратно пропорциональное диаметру пузыря, восстанавливает форму. Вот почему чем меньше пузырь, тем меньше размах колебаний. Ведь с уменьше­нием его размера деформирующее давление уменьшается, а восстанавливающее растет.

Колебания пузыря происходят в воде. Грамотнее гово­рить так: колеблется не пузырь, а вода вблизи области, где она отсутствует и которую мы называем пузырем. А если дело обстоит так, то время, в течение которого про­исходит одно колебание (τ), должно зависеть от свойств воды — вязкости (η) и поверхностного натяжения (α). Кроме того, период должен зависеть и от размера пузыря (R). Оказывается, что во всех этих зависимостях дейст­вует самый простой закон «чем — тем»: чем больше вяз­кость — тем больше время, чем больше поверхностное на­тяжение — тем меньше время, чем больше размер — тем больше время. Формула, выражающая эти зависимости, выглядит так:

τ  ≈ Rη/ α

Эта формула — единственно возможная комбинация вели­чин, от которых зависит τ, имеющая размерность времени.

Кадры кинофильмов хорошо подтверждают эту законо­мерность. Из кинофильмов мы заимствовали сведения о величинах τ и R и по формуле вычисляли отношение η/α. Если теперь из таблиц физических констант заимствовать η, можно определить α, если заимствовать α — можно оп­ределить η. И α и η оказывались вполне разумными.

Был отснят еще один любопытный эпизод, о котором сто­ит рассказать. Кинокамера следила за тем, что происходит, когда пузырек — капля отрицательного дождя — падает на границу раздела между водой и воздухом. События, ко­торые при этом разыгрываются, тоже зависят от размера пузыря. Крупный пузырь вздувается над поверхностью во­ды, при этом большая полусферическая арка из тонкой водяной пленочки оказывается нежизнеспособной и почти мгновенно лопается. Пузырь поменьше оказывается более жизнеспособным: хорошо видно, как постепенно меняется его форма, пока не становится равновесной. Некоторое время такой пузырь живет, а затем лопается либо вслед­ствие обстоятельств случайных — то ли села на него пы­линка, то ли порвал его слабый ветерок, либо оттого, что жидкость с верхней части пузыря стекла к его подножию. Иная судьба у маленьких пузырьков, образовавшихся на кончике миллиметровой трубки. Прикасаясь к границе раздела, они немного деформируют ее, приклеиваются к ней и, почти полностью находясь в воде, сохраняются на­долго.

И наконец, еще одно наблюдение. Большие пузыри всплы­вают очень быстро, а маленькие движутся медленно — все, как в настоящем дожде. И, как в настоящем дожде, крупные пузыри — капли — догоняют мелкие и погло­щают их. В этом следует усматривать еще одно основание для того, чтобы пузыри, всплывающие в воде, назвать антидождем. А то, что из капель такого дождя не образу­ются лужи,— аналогии не помеха. Ведь капли настоя­щего дождя на поверхности реки тоже луж не создают ...