В этом явлении многое нуждается в объяснении. Надо понять, какие капли ползут и какие застывают, приклеившись к стеклу? Почему остается за каплей след? И всегда ли он остается?
Прежде чем объяснить, что происходит с дождевой каплей на отвесном оконном стекле, рассмотрим поведение капли на гладкой поверхности твердого тела, которая с горизонтом образует некоторый угол г]з. Если бы на гладкой поверхности располагалась не жидкая капля, а, скажем, твердый кубик, происходило бы следующее. До некоторого значения угла я(з кубик по поверхности не двигался бы, а затем, при дальнейшем увеличении угла, он начал бы скользить по поверхности. Об этом подробно рассказывают в школе на уроках физики, говоря, что на кубик действуют две силы: сила трения и проекция силы тяжести на направление возможного движения кубика по наклонной плоскости. Эти силы действуют в противоположных направлениях, но сила трения не зависит от наклона плоскости, а проекция силы тяжести с увеличением угла наклона растет. И когда угол наклона превзойдет тот, при котором эта проекция станет равной силе трения, кубик начнет скользить по поверхности.
Теперь вернемся к капле. Схематически здесь все так же, как в случае твердого кубика: есть сила тяжести, есть и сила, подобная силе трения, только в случае капли эта сила отличается некоторой особенностью, так как капля не скользит, а переливается по поверхности. По наклонной поверхности жидкая капля перемещается, подобно гусенице. В тыльной части капли жидкость отрывается от поверхностней перетекает в лобовую часть. В этом процессе любой участок жидкости, контактирующий с поверхностью, со временем оказывается перед необходимостью оторваться от нее. Сила, которая для этого необходима, и является аналогом силы трения, действующей, когда твердый кубик скользит по твердой поверхности.
Чтобы понять, что же происходит на оконном стекле во время дождя, надо определить две конкурирующие силы: проекцию силы тяжести (F1) и силу, необходимую для отрыва жидкости от твердой поверхности (F2) в области тыльной части движущейся капли.
Сила F1зависящая от угла наклона плоскости по отношению к горизонту φ, равна F1= mgsin φ (т — масса капли). Происхождение силы F2 связано с тем, что жидкость и твердое тело, на поверхности которого она находится, притягиваются друг к другу силами молекулярного взаимодействия. Это взаимодействие количественно можно охарактеризовать той энергией, которую необходимо затратить, чтобы отделить жидкость от твердой поверхности по площади контакта 1 см2. До отрыва энергия, связанная с границей жидкость — твердое, равнялась αжт. После отрыва жидкости от твердого тела образуются две поверхности; одна из них — свободная поверхность жидкости с энергией αж, вторая — свободная поверхность твердого тела с энергией αт. Таким образом, интересующая нас энергия отрыва в расчете на 1 см2 равна Δα = αт + αж —αжт
Схема движения капли по наклонной плоскости
Имея в виду каплю, которая с поверхностью твердого тела соприкасается по кругу диаметром 2R, величину силы F2можно вычислить, следуя очевидной логике. Мысленно сместим каплю как целое на некоторое расстояние х. При этом будет выполнена работа (или затрачена энергия), равная произведению площади, на которой жидкость оторвалась от твердого тела, на величину Δα. Легко сообразить, что эта площадь равна 2Rxи, следовательно, выполненная работа А = 2RΔαx. А так как работа равна произведению силы F2на путь х, то F2= 2RΔα. Может возникнуть вопрос: почему учитывается затрата энергии на отрыв тыльной части капли от поверхности твердого тела и не учитывается выигрыш энергии вследствие «набегания» лобовой части капли на эту поверхность? Дело в том, что энергия, выигранная при «набегании», не используется для облегчения отрыва. Она просто рассеивается, быть может, чуть-чуть нагревая каплю. Идущему по болоту не легче вытаскивать правую ногу из трясины из-за того, что левая в это время легко туда проваливается.
Чтобы капля поползла по наклонной поверхности, необходимо выполнение условия: F1 >F2, или mgsin φ>2RΔα. Учтя, что оконное стекло наклонено по отношению к линии горизонта под углом φ = 90°, а это означает, что sin φ = 1, легко придем к заключению, что по стеклу поползут лишь те капли, масса которых удовлетворяет условию: