Выбрать главу

Опыт ставился так. Включалась струя. Ее напор регулировался таким образом, чтобы вершина струи не дости­гала верхнего диска. Начинали вращать ручку электростатической машины, следили за показаниями вольтмет­ра и кинокамерой снимали все то, что происходило со струей в электрическом поле.

Первая кинограмма. На приводимых кадрах последова­тельно отражено событие, которое происходит на конце струи, когда приложено небольшое напряжение. При на­пряжении около 200 в/см на конце струи образуется вна­чале небольшая, но постепенно увеличивающаяся капля, которая затем оседает вместе со струей и стекает вдоль нее. После этого струя поднимается, и процесс начинается сначала: зарождается и растет капля, оседает вместе со струей и стекает по ней. Выглядит это очень красиво — создается впечатление, что капля танцует на струе: при­седает и поднимается, приседает и поднимается. В объяс­нении нуждаются две характеристики явления: во-первых, почему на конце струи начинает формироваться крупная приседающая капля, которая ранее, в отсутствие поля, не образовывалась, во-вторых, чем определяется частота при­седаний капли?

Известно, что в отсутствие поля на конце струи форми­руются небольшие капли. Судьба каждой из них абсо­лютно независима от судьбы соседней капли. Независимо друг от друга они отрываются от струи и опадают. Если же струя находится в поле, каждая из образующихся капель поляризуется — это означает, что заряды, имеющиеся в объеме каждой капли, перераспределяются так, что у одного конца капли оказывается больше положитель­ных зарядов, а у противоположного — больше отрица­тельных. Поляризованные капли уже не безучастны друг к другу, они начинают взаимно притягиваться, образуя укрупненную каплю. До достижения некоторого размера эта капля поддерживается напором струи, а затем расту­щая капля, давя своей тяжестью на струю, прижимает ее к стеклянному наконечнику и оседает вместе с ней. Я. И. Френкель вычислил, что две капельки, каждая из которых имеет радиус 2 мм, друг к другу притягиваются с малой силой — всего 1 дина, но ее оказывается достаточно, чтобы удержать их рядом и вынудить принять участие в формировании крупной кап­ли.

 

Щеточка из водяных капель, расширяющаяся по мере роста напряженно­сти электрического поля

А теперь о частоте присе­даний или, лучше, так: о вре­мени τ, которое проходит между двумя приседаниями. Его можно определить, рас­суждая следующим образом. Растущая со временем капля будет увеличивать свой раз­мер до тех пор, пока давле­ние, оказываемое ею на струю (Рк), не станет равным давле­нию струи на каплю (Рс). Если нам известны скорость υ и сечение s струи, мы легко можем определить величины Рк и Рс. Они равны отноше­нию соответствующих сил Fк и Fс к сечению струи:

Рк = Fк/sиРс = Fс /s .

Очевид­но, Fк = тк. g,аFс = тс.ω, где g — ускорение силы тя­жести, которой подвержена капля, тс — масса струи дли­ной h между наконечником и каплей, а ω — ускорение или, точнее, замедление, с которым движется струя. Так как у выхода из стеклянного наконечника струя имеет ско­рость υ,а в месте соприкосно­вения с набухшей каплей ее скорость обращается в нуль, то ω ≈υ / τ

Считая, что средняя скорость струи υcp =υ/2, можно записать, что

тк =υ/2. sρτ ,  а тс =shρ .

Вот теперь, приравнивая Рк и Рс, получим:

τ ≈ (2h/g)1/2

В наших опытах h = 20 см и, следовательно, τ должно бы равняться —10-1 сек. В действительности τ оказывается немного большим, видимо, из-за того, что набухшая кап­ля не свободно падает, а стекает вдоль струи, испытывая при этом трение о нее. А вот следующее из формулы пред­сказание, что τ ~h1/2, когда увеличение длины струи, к примеру, в 4 раза должно увеличить время между двумя приседаниями вдвое, — оправдывается.

Вторая кинограмма. Эта кинограмма отражает изме­нения, которые происходят с концом распадающейся струи, по мере того как возрастает напряженность электричес­кого поля Е. Отчетливо видно, что на конце струи вместо приседающей капли формируется густая щеточка, фон­танчик мелких капель, разлетающихся в разные стороны. С ростом напряженности щеточка становится более широ­кой, и точка на струе, где начинается ее разветвление, приближается к нижнему электроду. Расстояние между этой точкой и электродом обозначим l — далее оно нам по­надобится. Когда напряженность достигла ~ 2000 в/см, практически вся струя начиная от места выхода ее из стек­лянного наконечника (он был немного выше нижнего элект­рода) превращалась в ветвистый фонтан из мелких капель.