Превращение тепловых полей в красочную картину — лишь одно из многих замечательных свойств кристаллических жидкостей. Вот пленка, которая только что лежала на моей ладони, отмечая радужными переливами ее температуру. Ее, давно угасшую, черную, забыли на краешке стола. Я беру металлический стержень и, слегка нажимая, медленно провожу им по глянцевой поверхности. Стержень холодный, но за ним почему-то тянется, тут же исчезая, коричневый след. А если нажать посильнее? След становится красным. Еще сильнее — зеленоватым.
Что это?
Жидкий кристалл реагирует на давление. В зависимости от силы воздействия меняется и цвет. Это свойство анизотропных жидкостей используется для создания механических датчиков. Специально подбирая состав жидкого кристалла, можно добиться весьма высокой чувствительности к давлению — до 2–6 граммов на квадратный сантиметр. Более того, эти вещества, нанесенные на предметы, замечают колебания, сигнализируя переменой цвета. Они делают видимой вибрацию деталей, распространение по поверхности тел ультразвуковых волн и обычного звука. Исследования последнего времени показали, что уже существующие жидкие кристаллы реагируют на акустическое воздействие в интервале частот от нескольких герц до нескольких мегагерц. Нет сомнения, что синтез новых веществ позволит еще более расширить звуковой диапазон, который можно сделать видимым.
…В почте, пришедшей в Институт кристаллографии АН СССР, письмо работников Московской водопроводной станции. Они просят ученых разработать прибор, который будет следить за запахом водопроводной воды и «поднимать тревогу» при отклонениях от нормы.
— Разве и такой прибор возможен? — спрашиваю Игоря Григорьевича Чистякова.
— Конечно. Вот свежие научные данные: жидкие кристаллы «чувствуют» ничтожные — одна часть на миллион — примеси различных паров и газов к воздуху и воде. Следовательно, создание чутких газоанализаторов — вопрос технический: просто надо взять и сделать. Ну, конечно, потребуются люди, некоторые материалы, время. Но научной проблемы здесь уже нет.
Сейчас из сферы научных поисков в сферу конструирования и широкого изготовления начинают переходить дешевые и удобные устройства, необходимые в электротехнике, оптике, электронике. Основаны они на способности некоторых жидких кристаллов очень энергично откликаться на действие слабых магнитных и электрических полей. Это световые табло, загорающиеся при небольшом напряжении и потребляющие ничтожно малую электрическую энергию. Это оптические затворы, управляемые светофильтры, автомобильные и оконные стекла с изменяющейся, по желанию владельца, прозрачностью. Это плоские, как книга, телевизоры. Коротко говоря, круг задач, который может быть решен с помощью жидкокристаллических устройств, практически охватывает все основные задачи информационной техники — получение, хранение, передачу и воспроизведение информации.
Что же это за чудо — жидкие кристаллы, каким образом им удается реагировать на столь разнообразные воздействия?
Этот вопрос волнует ученых. Но на него пока нет однозначного и четкого ответа. Несмотря на солидный возраст, наука, изучающая анизотропные жидкости, пребывает в младенчестве. Хотя к сегодняшнему дню выявлено множество фантастических свойств этих веществ, хотя уже обозначились разнообразнейшие области их применения, разработанной теории жидких кристаллов еще не существует. Все, чего достигла наука — а достигла она немалого, — сделано в значительной мере эмпирически.
Сейчас разработано несколько гипотез, объясняющих процессы, происходящие в жидких кристаллах. Сущность этих гипотез можно изложить (в самом приближенном виде) следующим образом.
В жидкокристаллическом состоянии могут находиться вещества, молекулы которых имеют форму палочек или вытянутых пластинок. Это жироподобные вещества, водные растворы мыл и даже скопления некоторых вирусов.
Внутреннее строение, структура кристаллических жидкостей разных типов различна. У одних палочки-молекулы смотрят лишь в одну, строго определенную сторону, но вращаться вокруг своей оси и перемещаться относительно друг друга могут сравнительно свободно. У других молекулы прочно закреплены концами, как ворсинки в ковре. Несколько ковров, сложенных один на другой, и есть подобие слоя жидкого кристалла такого типа. Двигаться молекулы могут лишь коллективно — как в том случае, когда из стопы вытаскивают один из ковров.
И наконец, третий тип. Это именно те вещества, о которых говорилось выше, — холестерические. Их молекулы, напоминающие продолговатые пластинки, расположены параллельно друг другу, словно листы в стопке бумаги. Перемещаться молекулы могут либо поступательно, просто скользя друг по другу, либо вращаясь — закручиваясь и образуя спиральную структуру.