Топология сети может меняться по мере того, как отдельные станции и мосты включаются, выключаются, а также перемещаются. Чтобы зафиксировать эту динамику, в таблице указывается время прибытия фрейма от станции. При получении новых фреймов это время обновляется. Таким образом, для каждой станции известно время последнего полученного от нее фрейма.
Время от времени процесс сканирует хеш-таблицу и удаляет все записи старше нескольких минут. Таким образом, если компьютер был выключен, перенесен на новое место и включен снова, уже через несколько минут он войдет в обычный режим работы, и для этого не потребуется никаких специальных действий. Это также означает, что если станция «молчит» в течение нескольких минут, адресованный ей трафик снова будет рассылаться методом лавинной адресации, пока она сама не отправит какой-нибудь фрейм.
Процедура маршрутизации входящего фрейма зависит от того, на какой порт он прибыл (порт-источник) и на какой адрес направляется (адрес назначения). Алгоритм выглядит следующим образом:
1. Если порт-источник и порт для адреса назначения совпадают, фрейм игнорируется.
2. Если порт-источник и порт для адреса назначения различаются, фрейм переправляется на порт назначения.
3. Если порт назначения неизвестен, используется алгоритм лавинной адресации и фрейм пересылается на все порты, кроме источника.
Может ли первая ситуация произойти с двухточечными линиями? Ответ — да, если для соединения группы компьютеров с мостом используются концентраторы. Пример показан на илл. 4.33 (б), где станции E и F соединены с концентратором H1, который, в свою очередь, подключен к мосту B2. Если станция E отправит фрейм станции F, то концентратор передаст его и F, и мосту B2. Именно это делают концентраторы — они связывают все порты вместе так, чтобы фрейм, полученный на одном порте, просто выводится на всех остальных. Фрейм достигнет моста B2 на порте 2, который уже является правильным выходным портом для попадания в пункт назначения. Мост B2 должен просто отказаться от фрейма.
Поскольку этот алгоритм должен применяться к каждому входящему фрейму, обычно он осуществляется с помощью специальных чипов СБИС. Чип производит поиск и обновляет записи таблицы за несколько микросекунд. Мосты проверяют только MAC-адреса, чтобы решить, как отправить фреймы. Поэтому можно начать отправку, как только появилось поле заголовка назначения — еще до того, как дошла остальная часть фрейма (конечно, если выходная линия доступна). Это сокращает время прохождения через мост, а также количество фреймов, которые мост должен буферизовать. Такой способ называют коммутацией без буферизации пакетов (cut-through switching) или маршрутизацией способом коммутации каналов (wormhole routing), и обычно он реализуется аппаратными средствами.
Можно взглянуть на работу моста с точки зрения стека протоколов и разобраться, что собой представляет устройство канального уровня. Рассмотрим фрейм, посланный от станции А станции D в конфигурации на илл. 4.33 (а), где в качестве LAN выступает сеть Ethernet. Фрейм пройдет через один мост. Стек используемых при этом протоколов показан на илл. 4.34.
Илл. 4.34. Протоколы, которые реализуются в мосте
Пакет приходит с более высокого уровня и спускается на уровень MAC Ethernet. Он получает заголовок Ethernet (а также трейлер, не показанный на рисунке). Далее фрейм передается на физический уровень, проходит по кабелю и принимается мостом.
В мосте фрейм передается с физического уровня на уровень MAC Ethernet. Здесь фрейм обрабатывается дольше, чем на аналогичном уровне станции. Он передается на ретранслятор, все еще в пределах уровня MAC. Функция ретрансляции в мосте использует только заголовок MAC Ethernet, чтобы определить, как обработать фрейм. В нашем случае фрейм передается порту уровня MAC Ethernet, который связан со станцией D, и продолжает свой путь.
В общем случае ретрансляторы на конкретном уровне могут переписать для него заголовки. Позже будет показано, как это происходит в виртуальных LAN. Мост ни в коем случае не должен проверять содержимое фрейма и выяснять, что в нем находится IP-пакет. Для работы моста это значения не имеет, к тому же это нарушает иерархическое представление протокола. Обратите внимание, что мост, имеющий k портов, также включает k экземпляров MAC-уровня и физического уровня. В нашем простом примере k = 2.
4.7.3. Мосты связующего дерева
Для повышения надежности между мостами устанавливаются резервные соединения. На илл. 4.35 показаны два параллельных канала между В1 и В2. Эта конструкция гарантирует, что при разрыве одного соединения сеть не будет разделена на два набора компьютеров, которые не могут взаимодействовать друг с другом.
Илл. 4.35. Мосты с двумя параллельными соединениями
Впрочем, это создает некоторые дополнительные проблемы, поскольку в топологии возникают циклы. Рассмотрим следующий пример. Станция А отправляет фрейм в ранее неизвестный пункт назначения (илл. 4.35). Каждый мост, действуя по обычным правилам обработки фреймов с неизвестным получателем, использует метод лавинной адресации. Мост В1 получает фрейм от станции А. Обозначим его F0. Мост передает копии этого фрейма через все остальные порты. Мы рассмотрим только те из них, которые соединяют В1 и В2 (хотя фрейм будет отправлен и через другие). Так как между В1 и В2 имеется два соединения, в В2 попадут две копии фрейма. Они обозначены на илл. 4.35 как F1 и F2.
Вскоре после этого мост В2 получает их. Разумеется, он не знает (и не может знать), что это копии, а не два разных фрейма, отправленных друг за другом. Поэтому В2 принимает F1 и F2 и отправляет копии каждого из них со всех остальных портов. Так возникают фреймы F3 и F4, которые по двум соединениям отправляются обратно в В1. Мост В1 видит два новых фрейма с неизвестным адресом назначения и копирует их снова. Этот цикл продолжается бесконечно.
Эта проблема решается установлением связи между мостами и наложением на реальную топологию сети связующего дерева (spanning tree), которое охватывает оба моста. В результате некоторые потенциальные соединения между мостами игнорируются. Это позволяет создать фиктивную незацикленную топологию, которая является подмножеством реальной системы.
Для примера на илл. 4.36 показаны пять мостов, которые связаны между собой и имеют подключенные к ним станции. Каждая станция соединяется только с одним мостом. Есть несколько резервных каналов между мостами, так что если будут использоваться все соединения, фреймы будут зациклены. Эту систему можно представить в виде графа: мосты являются его вершинами, а соединения между ними — его ребрами. Такой граф можно редуцировать до связующего дерева, которое по определению не имеет циклов, удалив из него соединения, изображенные на илл. 4.36 пунктирными линиями. В получившемся связующем дереве между каждыми двумя станциями существует только один путь. После того как мосты договорятся друг с другом о топологии связующего дерева, все коммуникации осуществляются только по его ветвям. Поскольку путь от отправителя к получателю единственный, зацикливание невозможно.
Илл. 4.36. Связующее дерево, соединяющее пять мостов. Пунктирными линиями показаны соединения, которые в него не входят
Чтобы построить связующее дерево, мосты применяют распределенный алгоритм. Каждый из них периодически рассылает по всем своим портам конфигурационное сообщение соседним мостам и обрабатывает полученные от них сообщения, как описано ниже. Эти сообщения дальше не отправляются, так как их цель — построение дерева, которое затем используется для передачи.
Сначала необходимо выбрать один мост, который будет корнем связующего дерева. Для этого каждый мост включает в конфигурационное сообщение идентификатор, основанный на своем MAC-адресе, а также идентификатор потенциального корневого моста. MAC-адреса устанавливаются изготовителем и являются уникальными, что гарантирует уникальность и удобство идентификаторов. Мосты выбирают в качестве корня мост с наименьшим идентификатором. После обмена достаточным числом сообщений, чтобы распространить эту новость, мосты принимают общее решение. На илл. 4.36 мост B1 имеет наименьший идентификатор, он и становится корнем.