Оставшиеся 87 столбцов каждого фрейма содержат 87 × 9 × 8 × 8000 == 50,112 Мбит/с пользовательских данных. Они могут быть голосовыми сэмплами в случае T1 и других систем связи или пакетами. SONET — это просто контейнер для передачи битов. Огибающая синхронной полезной нагрузки (Synchronous Payload Envelope, SPE) не всегда начинается в столбце 4 ряда 1. SPE может начинаться в любом месте фрейма. Первая строка служебных данных линии включает указатель на первый байт SPE. А первая строка SPE представляет собой служебные данные пути (то есть заголовок сквозного протокола подуровня пути).
Благодаря тому что SPE может начинаться в любом месте фрейма SONET и даже охватывать два фрейма, как показано на илл. 2.34, система становится более гибкой. Например, если во время формирования фиктивного фрейма SONET в источник поступает пользовательская информация, ее можно вставить в текущий фрейм, а не ждать начала следующего.
Иерархия мультиплексирования SONET/SDH приведена на илл. 2.35. В стандарте описаны скорости от STS-1 до STS-768, то есть примерно от линии T3 до 40 Гбит/с. Несомненно, со временем будут описаны и более высокие скорости. Следующей будет система OC-3072 со скоростью 160 Гбит/с, когда это станет технически выполнимым. Оптическая система, соответствующая STS-n (синхронному транспортному сигналу n-уровня), называется OC-n и совпадает с ним с точностью до бита, с той разницей, что для синхронизации требуется некоторая перестановка битов. Названия SDH отличаются — они начинаются с OC-3, поскольку в системах на основе стандартов МСЭ нет скорости, близкой к 51,84 Мбит/с. На илл. 2.35 приведены распространенные варианты скоростей, начиная с OC-3 и далее, кратные 4. Общая скорость учитывает все служебные данные. Скорость передачи SPE не учитывает служебные данные линии и секции. Скорость передачи пользовательских данных учитывает все три вида служебных данных и охватывает только 86 столбцов пользовательских данных.
Когда система связи (например, OC-3) не мультиплексируется, а переносит данные от единственного источника, в ее обозначение добавляется буква c (от concatenated — «конкатенированный»). Таким образом, OC-3 — это система связи со скоростью 155,52 Мбит/с, состоящая из трех отдельных систем OC-1, а OC-3c — поток данных из одного источника на скорости в 155,52 Мбит/с. Три потока данных OC-1 в OC-3c чередуются по столбцам: столбец 1 из потока 1, столбец 1 из потока 2, столбец 1 из потока 3, затем столбец 2 из потока 1 и т.д., в результате чего получается фрейм шириной в 270 столбцов и глубиной в 9 строк.
SONET
SDH
Скорость передачи данных (Мбит/с)
Электрическая
Оптическая
Оптическая
Общая
SPE
Пользовательских данных
STS-1
OC-1
51,84
50,112
49,536
STS-3
OC-3
STM-1
155,52
150,336
148,608
STS-12
OC-12
STM-4
622,08
601,344
594,432
STS-48
OC-48
STM-16
2488,32
2405,376
2377,728
STS-192
OC-192
STM-64
9953,28
9621,504
9510,912
STS-768
OC-768
STM-256
39813,12
38486,016
38043,648
Илл. 2.35. Скорости мультиплексирования SONET и SDH
2.5.4. Коммутация
С точки зрения обычного телефонного инженера, телефонная система состоит из двух основных частей: наружное оборудование (абонентские шлейфы и соединительные линии), физически находящееся вне АТС, и внутреннее оборудование (коммутаторы), расположенное на АТС. До сих пор мы рассматривали только наружное оборудование. Пришло время обсудить внутреннее.
Сегодня в сетях применяются два различных метода: коммутация каналов и коммутация пакетов. Первый метод использовался в традиционных телефонных системах, а в основе технологии передачи голоса по IP лежит второй метод. Мы обсудим коммутацию каналов несколько подробнее, а затем сравним ее с коммутацией пакетов. Оба метода важны, поэтому мы вернемся к ним еще раз, когда будем говорить о сетевом уровне.
Коммутация каналов
Изначально при совершении человеком или компьютером телефонного звонка коммутационное оборудование строило физический маршрут между двумя абонентами и поддерживало его во время разговора. Эта методика называется коммутацией каналов (circuit switching). Схематически она представлена на илл. 2.36 (а). Каждый из шести прямоугольников соответствует коммутатору системы связи (оконечной телефонной станции, центральной телефонной станции и т.д.). В этом примере у каждой станции три входящие и три исходящие линии. При прохождении звонка через коммутатор устанавливается физическое соединение между линией связи, по которой поступил звонок, и одной из выходных линий, показанных пунктиром.
Илл. 2.36. (а) Коммутация каналов. (б) Коммутация пакетов
В первые годы существования телефонной связи подключение осуществлял оператор, вручную вставляя гибкий кабель во входной и выходной разъемы. С изобретением автоматического оборудования для коммутации каналов связана забавная история. Его создал в XIX веке владелец похоронного бюро Элмон Б. Строуджер (Almon B. Strowger) из штата Миссури. После изобретения телефона в случае чьей-нибудь смерти люди звонили на коммутатор и говорили телефонистке: «Соедините меня, пожалуйста, с похоронным бюро». К несчастью для мистера Строуджера, телефонистка в их городке была женой владельца другого похоронного бюро. Стало ясно, что либо он придумает автоматический коммутатор, либо разорится. И он выбрал первый вариант. В течение почти сотни лет после этого по всему миру применялось оборудование для коммутации каналов, известное под названием декадно-шагового искателя Строуджера (Strowger gear). История умалчивает о том, не стала ли потерявшая работу телефонистка оператором справочного бюро, отвечая на вопросы вроде: «Каков номер телефона похоронного бюро?»
Приведенная на илл. 2.36 (а) модель, конечно, сильно упрощена, поскольку физический путь между двумя телефонами может включать микроволновые или оптоволоконные каналы связи, сочетающие путем мультиплексирования тысячи звонков. Тем не менее основная идея все та же: во время звонка устанавливается соединение и возникает выделенный путь между абонентами, который поддерживается до завершения звонка.
Важная особенность коммутации каналов: необходимо сформировать сквозной путь между абонентами перед отправкой данных. Между окончанием набора номера и тем, когда зазвонит телефон, может пройти 10 с (или больше — при междугородних или международных разговорах). В это время телефонная система ищет путь, как показано на илл. 2.37 (а). Обратите внимание, что еще до начала передачи данных сигнал запроса звонка должен пройти весь путь до точки назначения, а его получение должно быть подтверждено. Во многих компьютерных приложениях (например, при проверке наличия средств на карте в POS-системах) длительное ожидание нежелательно.
Илл. 2.37. Хронометраж событий при: (а) коммутации каналов; (б) коммутации пакетов
Как только путь между участниками разговора установлен, задержка данных зависит только от скорости распространения электромагнитного сигнала: примерно 1000 км за 5 мс. Кроме того, благодаря выделенному маршруту можно не бояться перегруженности — после соединения вы уже не услышите сигнала «занято».
Коммутация пакетов
Альтернатива коммутации каналов — коммутация пакетов (packet switching), показанная на илл. 2.36 (б) и описанная в главе 1. При использовании этой технологии пакеты отправляются сразу же — заранее формировать выделенный путь не требуется (в отличие от коммутации каналов). Коммутация пакетов напоминает отправку нескольких писем по почте: все они передаются независимо друг от друга. Перемещение каждого отдельного пакета до пункта назначения производят маршрутизаторы на основе передачи с промежуточным хранением данных. Данная процедура отличается от коммутации каналов, при которой после установления соединения резервируется полоса пропускания на всем протяжении пути от отправителя к получателю. Все данные в канале следуют по этому пути строго в порядке отправления. При коммутации пакетов фиксированного пути не существует. А значит, пакеты могут передаваться по разным маршрутам в зависимости от сложившихся в сети условий на момент их отправки и могут доставляться в произвольном порядке.