Выбрать главу

Сети с коммутацией пакетов ограничивают максимальный размер пакета, гарантируя тем самым, что ни один пользователь не сможет надолго (например, на большое число миллисекунд) полностью занять линию передачи. Таким образом, сети с коммутацией пакетов могут работать с интерактивным трафиком. Кроме того, это снижает задержку: первый пакет длинного сообщения передается дальше до того, как полностью прибудет второй. Но задержка пакета в памяти маршрутизатора перед дальнейшей отправкой (связанная с буферизацией данных) превышает задержку при коммутации каналов, где биты непрерывно движутся по проводам, и ничего не сохраняется для последующей отправки.

Коммутация пакетов и каналов различается не только этим. Поскольку при коммутации пакетов не резервируется полоса пропускания, пакетам иногда приходится ждать дальнейшей передачи. В результате при одновременной отправке большого числа пакетов возникает задержка в очереди (queueing delay) и перегруженность сети. С другой стороны, нет риска услышать сигнал «занято» и потерять возможность использовать сеть. Таким образом, при коммутации каналов сеть перегружается во время установки соединения, а при коммутации пакетов — во время отправки данных.

Но если канал зарезервирован для конкретного пользователя, а трафика нет, то полоса пропускания простаивает, хотя могла бы использоваться для другого трафика. При коммутации пакетов такого не бывает, а значит, этот метод эффективнее с точки зрения системы. Чтобы увидеть принципиальную разницу между коммутацией пакетов и коммутацией каналов, необходимо осознать следующий компромисс. Либо мы получаем гарантированный сервис с напрасной тратой ресурсов, либо — негарантированный, но без таковой. Коммутация пакетов устойчивее к сбоям, чем коммутация каналов. На самом деле именно поэтому она и была создана. Когда отказывает сетевой коммутатор, все подключенные к нему каналы обрываются и их нельзя использовать для передачи. При коммутации пакетов можно перенаправить пакеты в обход неработающих сетевых коммутаторов.

Еще одно различие между коммутацией пакетов и каналов — тарификация трафика. При коммутации каналов (например, для голосовых звонков по телефону через PSTN) трафик тарифицируется в зависимости от расстояния и времени. В мобильной связи расстояние обычно не имеет значения (разве что при международных звонках), а время играет лишь второстепенную роль. Например, тарифный план на 2000 бесплатных минут обходится дороже плана с 1000 минут и пониженным тарифом по ночам или выходным. При коммутации пакетов, как в стационарных, так и в мобильных сетях, длительность соединения роли не играет и основным фактором является объем трафика. С домашних пользователей в США и Европе ISP обычно взимают ежемесячную абонентскую плату (так проще для ISP и понятнее для клиентов). В некоторых развивающихся странах тарификация до сих пор происходит на основе объема трафика: пользователи покупают «пакет данных» определенного размера, который используется на протяжении цикла тарификации. При этом в определенное время дня или по некоторым направлениям трафик может быть бесплатным либо не входить в ежедневную квоту. Такие сервисы иногда называют сервисами с нулевой ставкой (zero-rated services). В целом ISP в опорной сети интернета тарифицируют услуги исходя из объемов трафика. В основе типовой модели тарификации лежит 95-й процентиль пятиминутных измерений. ISP измеряет трафик, прошедший через конкретное соединение за последние 5 минут; 30-дневный расчетный период включает 8640 подобных 5-минутных интервалов; ISP выставляет счет, исходя из 95-го процентиля этих измерений. Эту методику часто называют тарификацией 95-го процентиля (95th percentile billing).

На илл. 2.38 приведена общая сводка различий между двумя видами коммутаций. Традиционно коммутация каналов применялась в телефонных сетях ради

Пункт

С коммутацией каналов

С коммутацией пакетов

Соединение

Необходимо

Не требуется

Выделенный физический путь

Да

Нет

Все пакеты следуют по одному пути

Да

Нет

Пакеты прибывают в порядке отправления

Да

Нет

Отказ коммутатора играет критическую роль

Да

Нет

Доступная полоса пропускания

Фиксированная

Динамическая

Время возможной перегруженности сети

Во время установления соединения

На любом пакете

Вероятность траты полосы пропускания впустую

Да

Нет

Передача данных с их промежуточным хранением

Нет

Да

Тарификация

Поминутно

Побайтно

Илл. 2.38. Сравнение сетей с коммутацией каналов и коммутацией пакетов

повышения качества звонков, а коммутация пакетов использовалась в компьютерных сетях из-за ее простоты и эффективности. Впрочем, существуют заслуживающие упоминания исключения. В некоторых более старых компьютерных сетях «под капотом» используется коммутация каналов (например, в сетях, основанных на стандарте X.25), а в более новых телефонных сетях при передаче голоса по IP используется коммутация пакетов. Для пользователей это выглядит как обычный телефонный звонок, но внутри сети происходит коммутация сетевых пакетов голосовых данных. Это способствовало развитию рынка дешевых международных звонков с помощью переговорных карточек (хотя, вероятно, с более низким качеством звонка, чем у официальных телефонных компаний).

22 Также встречаются названия «локальный шлейф», «локальная кольцевая линия» и др. — Примеч. пер.

23 Она же решетчатое кодирование, или решетчатая кодированная модуляция. — Примеч. пер.

2.6. Сотовые сети

Даже если традиционная телефонная система когда-нибудь полностью перейдет на мультигигабитное оптоволокно, этого будет недостаточно. Современные пользователи хотят звонить, проверять электронную почту и просматривать веб-страницы где угодно: в самолетах, автомобилях, бассейнах и даже во время пробежек в парке. Это порождает невероятный интерес к беспроводной телефонии (а также инвестициям в нее).

Мобильные телефонные системы используются для глобальной голосовой связи и обмена данными. Уже насчитывается пять поколений мобильных телефонов (иногда называемых сотовыми): 1G, 2G, 3G, 4G и 5G. Первые два поколения предоставляли услуги аналоговой (1G) и цифровой (2G) передачи голоса; поколение 3G — цифровой передачи голоса и данных (интернет, электронная почта и т.д.). В технологии 4G добавились новые возможности, включая дополнительные методики передачи данных физического уровня (например, восходящую передачу OFDM), а также фемтосоты на основе IP (домашние сотовые узлы, подключенные к стационарной интернет-инфраструктуре). Поколение 4G не поддерживает телефонию с коммутацией каналов, в отличие от его предшественников; в его основе — исключительно коммутация пакетов. В настоящее время постепенно развертываются сети 5G, но пройдут годы, прежде чем они полностью заменят сети предыдущих поколений. Технология 5G позволяет передавать данные на скорости до 20 Гбит/с и отличается большей плотностью размещения сотовых вышек. Особое внимание направлено на снижение сетевой задержки, чтобы обеспечить работу более широкого круга приложений, например современных интерактивных игр.

2.6.1. Основные понятия: соты, передача обслуживания, пейджинг

Во всех мобильных телефонных системах географические области делятся на соты (cells), именно поэтому переносные телефонные аппараты иногда называют сотовыми телефонами. Смежные соты используют разные наборы частот. Главная идея, благодаря которой пропускная способность сотовых систем намного выше, чем у их предшественников, — использование относительно маленьких сот и повторное использование частот в близко расположенных (но не смежных) сотах. Чем меньше соты, тем выше пропускная способность системы и тем экономнее потребление электроэнергии. В итоге передатчики и переносные телефонные аппараты становятся компактнее и дешевле.