Третья ниша — широковещательная трансляция. Сообщение, отправленное спутником, могут получить тысячи наземных станций одновременно. Поэтому спутники применяются для распределения значительной доли сетевых телепрограмм по локальным станциям. Сегодня существует масштабный рынок спутникового цифрового теле- и радиовещания непосредственно конечным пользователям, установившим дома или в машине спутниковые приемники. Транслировать можно и множество других видов контента. Например, организация, предоставляющая тысячам дилеров поток рыночных данных (цен на акции, облигации или товары), может значительно сэкономить, используя спутниковую систему вместо других средств связи.
В США есть несколько конкурирующих между собой спутниковых провайдеров, в том числе Hughes (также известный как DISH; в прошлом — EchoStar) и Viasat, работающих в основном со спутниками GEO и MEO, хотя некоторые постепенно переходят на LEO. По данным проекта MBA, в 2016 году они оказались в числе немногих интернет-провайдеров, быстродействие которых постепенно снижалось, скорее всего, из-за роста числа абонентов и ограниченной пропускной способности. Согласно отчету, они предлагали скорости не выше 10 Мбит/с.
Тем не менее в последние годы спутниковый интернет вызывает все больший интерес, особенно в таких сегментах рынка, как онлайн-доступ на борту самолета. Иногда для этого применяется прямой обмен сообщениями с мобильными широкополосными вышками, но при трансокеанских полетах этот вариант не подходит. Еще один метод решения проблемы ограниченной пропускной способности в самолетах состоит в передаче данных группе спутников на геостационарной орбите. Некоторые другие компании — упомянутая выше OneWeb и Boeing — работают над созданием опорной интернет-сети на основе спутников LEO. Это все еще несколько нишевый рынок, поскольку пропускная способность ожидается в районе 50 Мбит/с — намного ниже, чем у наземного интернета.
Похоже, что основной системой связи в будущем станет сочетание оптоволокна и сотовых сетей, а спутники будут использоваться в особых случаях. Впрочем, нужно учитывать экономическую составляющую. Несмотря на то что пропускная способность оптоволокна выше, вполне возможно, что на некоторых рынках спутники смогут успешно конкурировать с ним по цене. Стоимость запуска спутников может резко упасть вследствие развития технологий (например, если какой-нибудь космический аппарат будущего сможет выводить на орбиту десятки спутников за раз), а низкоорбитальные спутники могут внезапно стать популярными. При таком развитии событий неизвестно, победит ли оптоволокно в этом соревновании.
2.10. Нормативное регулирование физического уровня
Различные аспекты физического уровня требуют нормативных и управленческих решений, принципиально влияющих на создание и использование технологий. Мы вкратце обсудим текущую деятельность по разработке стратегий как в наземных (то есть телефонных и кабельных), так и в беспроводных сетях.
2.10.1. Распределение частот
Основная проблема, связанная со спектром электромагнитных волн, заключается в эффективном и справедливом распределении частот (spectrum allocation). Если разрешить множеству пользователей в пределах региона передавать данные в одном диапазоне, это, скорее всего, приведет к возникновению взаимных помех. Чтобы предотвратить полный хаос, существуют общенациональные и международные соглашения по использованию частот. Всем нужна высокая скорость передачи данных, а значит, и более широкий диапазон частот. Правительства выделяют части спектра для AM- и FM-радио, телевидения и мобильных телефонов, а также для телефонных компаний, полиции, судоходства, навигации, вооруженных сил, государственных служб и многих других конкурирующих пользователей. Одно из агентств МСЭ-R (WRC) пытается координировать выделение частот таким образом, чтобы можно было производить устройства, работающие во многих странах. Впрочем, рекомендации МСЭ-R необязательны для государств и иногда отвергаются Федеральной комиссией по связи, распределяющей частоты в США (обычно потому, что какая-нибудь могущественная политическая структура не хочет отдавать требуемую часть спектра).
Даже когда часть спектра выделяется под конкретные цели, например, для мобильной связи, остается вопрос распределения частот между компаниями. В прошлом широко применялись три алгоритма. Наиболее старый из них, «конкурс красоты» (beauty contest), требует от каждого оператора связи пояснить, почему его предложение лучше всего отвечает общественным интересам. Затем государственные служащие решают, какое из этих предложений нравится им больше всего. Распределение чиновниками объектов стоимостью в миллиарды долларов приводит к взяточничеству, коррупции и непотизму. Более того, даже кристально честному госслужащему, который сочтет, что иностранная компания лучше справится с задачей, чем любая из местных, придется давать много неприятных пояснений.
Это наблюдение привело к появлению второго алгоритма: лотереи (lottery) среди заинтересованных компаний. Но проблема с лотереями состоит в том, что участвовать в них могут даже компании, которые не собираются использовать выделенный им диапазон. Если конкурс выиграет, скажем, ресторан или обувной магазин, то он может просто перепродать спектр оператору связи с большой прибылью и безо всякого риска.
Ситуация, в которой случайные, но проворные компании получали колоссальные прибыли, никого не устраивала. В результате был придуман третий подход: распределение спектра путем торгов (auction), в которых выигрывает тот, кто предложит большую цену. Британское правительство, распродавая частоты для мобильных 3G-систем, ожидало выручить примерно $4 млрд, а получило около $40 млрд — все из-за ажиотажа среди операторов связи, до смерти боявшихся упустить лакомый кусочек. Это пробудило алчность в представителях других правительств, и они запустили свои собственные аукционы. Схема сработала, но некоторые операторы связи залезли в долги настолько, что оказались на грани банкротства. Даже в лучшем случае им понадобятся многие годы, чтобы окупить расходы на лицензию.
Существует и совершенно иной подход к выделению частот: вообще их не распределять, а вместо этого всем разрешить передачу на любой частоте, при этом регулируя мощность станций малой дальности, чтобы они не мешали друг другу. Именно поэтому правительства некоторых стран зарезервировали определенные полосы частот — так называемые ISM («Industrial, Scientific, Medical» — «промышленные, научные, медицинские») — для свободного использования. Дистанционное управление гаражными дверями, радиотелефоны, радиоуправляемые игрушки, беспроводные компьютерные мыши и многие другие беспроводные домашние устройства используют полосы ISM. Для минимизации взаимных помех между этими не согласованными между собой устройствами FCC требует ограничения мощности их передатчиков (например, до 1 Вт) и применения методик распределения сигналов по диапазону частот. Кроме того, эти устройства не должны мешать работе радиолокационных станций.
В разных странах расположение полос ISM в спектре отличается. Например, полосы частот, на которых сетевые устройства могут работать без лицензии в США, показаны на илл. 2.53. Полоса частот 900 МГц использовалась в первых версиях 802.11, но уже переполнена. Полоса частот 2,4 ГГц в большинстве стран доступна и широко используется для 802.11b/g и Bluetooth, хотя и подвержена помехам от микроволновых печей и радиолокационных станций. Часть спектра на частоте 5 ГГц включает диапазон U-NII (Unlicensed National Information Infrastructure — «нелицензируемая национальная информационная инфраструктура»). Полосы 5 ГГц относительно малоразвиты, но благодаря наибольшей полосе пропускания и использованию их в таких спецификациях Wi-Fi, как 802.11ac, обрели немалую популярность и тоже перегружены.
Илл. 2.53. Полосы ISM и U-NII, используемые в США беспроводными устройствами