Рис. 2.5. Три примера преломления луча света, падающего под разными углами, на границе кварцевого волокна и воздуха (а); луч света, пойманный полным внутренним отражением (б)
На рис. 2.5, б показан только один пойманный луч света, однако поскольку любой луч света с углом падения, превышающим критический, будет отражаться от стенок волокна, то и множество лучей будет одновременно отражаться под различными углами. Про каждый луч говорят, что он обладает некоторой модой, а оптическое волокно, обладающее свойством передавать сразу несколько лучей, называется многомодовым.
Однако если уменьшить диаметр волокна до нескольких длин волн света, то волокно начинает действовать подобно волноводу, и свет может двигаться только по прямой линии, без отражений от стенок волокна. Такое волокно называется одномодовым. Оно стоит дороже, но может использоваться при передаче данных на большие расстояния. Сегодняшние одномодовые волоконные линии могут работать со скоростью 100 Гбит/с на расстоянии до 100 км. В лабораториях были достигнуты и более высокие скорости, правда, на меньших дистанциях.
Прохождение света по волокну
Оптическое волокно изготавливается из стекла, которое, в свою очередь, производится из песка — недорогого необработанного материала, доступного в неограниченных количествах. Изготовление стекла было известно уже в древнем Египте, однако, чтобы свет мог проникнуть сквозь стекло, его толщина не должна превышать 1 мм, чего в то время было невозможно достичь. Стекло, достаточно прозрачное, чтобы его можно было использовать в окнах зданий, было изобретено в эпоху Возрождения. Для современных оптических кабелей применяется настолько прозрачное стекло, что если бы океаны вместо воды состояли из него, то дно океана было бы так же ясно видно, как поверхность суши с борта самолета в ясный день.
Ослабление силы света при прохождении через стекло зависит от длины волны (а также от некоторых физических свойств стекла). Оно определяется в виде отношения мощности входного сигнала к мощности выходного сигнала. Для стекла, используемого в оптическом волокне, зависимость ослабления от длины волны показана на рис. 2.6 в децибелах на километр длины волокна. Например, ослаблению мощности в два раза соответствует на графике 10 lg 2 = 3 дБ. На графике изображена ближняя инфракрасная часть спектра, используемая на практике. Видимый свет имеет несколько более короткие длины волн — от 0,4 до 0,7 мкм (1 мкм или 1 микрон равен 10-6 метра). Приверженцы точных наименований сказали бы, что длина волны измеряется в нанометрах — в данном случае речь о диапазоне от 400 до 700 нм, — однако мы будем использовать более привычные термины.
Длина волны, мкм
Рис. 2.6. Ослабление света в инфракрасной области спектра при прохождении через оптическое волокно
В системах связи используются три диапазона длин волн: 0,85, 1,30 и 1,55 мкм. Все три диапазона обладают полосой пропускания от 25 000 до 30 000 ГГц. Первым стал применяться диапазон с центром 0,85 мкм. Он обладает более высоким ослаблением, поэтому используется для передачи на короткие расстояния. Однако его преимуществом является то, что для этой длины волны лазеры и электроника могут быть сделаны из одного и того же материала (арсенида галлия). У двух остальных диапазонов показатели по ослаблению лучше (менее 5 % потерь на километр). В настоящее время широко используется диапазон 1,55 мкм и волоконные усилители с добавкой эрбия, которые работают прямо в оптическом домене.
Световые импульсы удлиняются по мере их продвижения по волокну. Это удлинение называется световой дисперсией. Величина удлинения зависит от длины волны. Чтобы не допустить перекрывания соседних расширяющихся импульсов, можно увеличить расстояние между ними, однако при этом придется уменьшить скорость передачи. К счастью, было обнаружено, что эффект дисперсии можно предотвратить, если придавать импульсам специальную форму, а именно обратной величины от гиперболического косинуса. В этом случае будет возможно посылать импульсы на тысячи километров без искажения формы. Такие импульсы называются уединенными волнами или солитонами. Значительная часть исследователей намерена перейти от лабораторных исследований уединенных волн к их промышленному использованию.