Оптоволоконные кабели
Структура оптоволоконного кабеля схожа с описанной выше структурой коаксиального провода. Разница состоит лишь в том, что в первом нет экранирующей сетки. На рис. 2.7, а показана отдельная оптоволоконная жила. В центре ее располагается стеклянная сердцевина, по которой распространяется свет. В многомодовом оптоволокне диаметр сердечника составляет 50 мкм, что примерно равно толщине человеческого волоса. Сердечник в одномодовом волокне имеет диаметр от 8 до 10 мкм.
Рис. 2.7. Вид одиночного волокна сбоку (а); поперечное сечение трехжильного кабеля (б)
Сердечник покрыт слоем стекла с более низким, чем у сердечника, коэффициентом преломления. Он предназначен для более надежного предотвращения выхода света за пределы сердечника. Внешним слоем служит пластиковая оболочка, защищающая остекление. Оптоволоконные жилы обычно группируются в пучки, защищенные внешней оболочкой. На рис. 2.7, б показан трехжильный кабель.
Обычно кабели кладутся в грунт на глубину около метра, где их могут случайно повредить грызуны или экскаватор. У побережья трансокеанические кабели укладываются в траншеи специальным механизмом. На большой глубине их обычно просто кладут на дно, где их могут зацепить рыболовные траулеры или перегрызть акулы.
Соединение отрезков кабеля может осуществляться тремя способами. Во-первых, на конец кабеля может прикрепляться специальный разъем, с помощью которого кабель вставляется в оптическую розетку. Подобное соединение приводит к потере 10-20 % силы света, зато оно позволяет легко изменить конфигурацию системы.
Во-вторых, они могут механически сращиваться — два аккуратно отрезанных конца кабеля укладываются рядом друг с другом и зажимаются специальной муфтой. Улучшение прохождения света достигается выравниванием концов кабеля. При этом через соединение пропускается свет, и задачей является добиться максимального соответствия мощности выходного сигнала мощности входного. Одно механическое сращивание кабелей занимает у опытного монтажника сетей около 5 минут и дает в результате потерю 10 % мощности света.
В-третьих, два куска кабеля могут быть сплавлены вместе. Сплавное соединение почти так же хорошо, как и сплошной кабель, но даже при таком методе происходит небольшое уменьшение мощности света.
Во всех трех типах соединений в точке соединения могут возникнуть отражения, и отраженный свет может интерферировать с сигналом.
Для передачи сигнала по оптоволоконному кабелю могут использоваться два типа источника света: светоизлучающие диоды (LED, Light Emitting Diode) и полупроводниковые лазеры. Они обладают различными свойствами, как показано в табл. 2.2. Их длина волны может быть настроена при помощи интерферометров Фабри—Перо (Fabry—Perot) или Маха—Цандера (Mach—Zehnder), устанавливаемых между источником и кабелем. Интерферометры Фабри—Перо представляют собой простые резонансные углубления, состоящие из двух параллельных зеркал. Свет падает перпендикулярно зеркалам, углубление отбирает те длины волн, которые укладываются в его размер целое число раз. Интерферометры Маха—Цандера разделяют свет на два луча, которые проходят различное расстояние и снова соединяются на выходе. Синфазными на выходе интерферометра окажутся лучи строго определенной длины.
Таблица 2.2. Сравнительные характеристики светодиодов и полупроводниковых лазеров
Характеристика
Светодиод
Полупроводниковые лазеры
Скорость передачи данных
Низкая
Высокая
Тип волокна
Многомодовые
Многомодовые или одномодовые
Расстояние
Короткое
Дальнее
Срок службы
Долгий
Короткий
Чувствительность к температуре
Невысокая
Значительная
Цена
Низкая
Высокая
Приемный конец оптического кабеля представляет собой фотодиод, генерирующий электрический импульс, когда на него падает свет. Обычное время срабатывания фотодиода, который преобразует оптический сигнал в электрический, ограничивает скорость передачи данных 100 Гбит/с. Термальный шум также имеет место, поэтому импульс света должен быть довольно мощным, чтобы его можно было обнаружить на фоне шума. При достаточной мощности импульса можно добиться пренебрежимо малой частоты ошибок.